

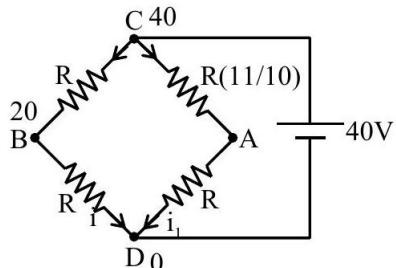
CAREER POINT
JEE Main Online Exam 2026
Memory Based
Questions & Solution
28th January 2026 | Evening

PHYSICS

1.

If resistance between A & C is increased by 10% through heating, then calculate $|V_A - V_B|$.

(1) $\frac{10}{21}$


(2) $\frac{5}{21}$

(3) $\frac{20}{21}$

(4) $\frac{5}{7}$

Ans. [3]

Sol.

$$i_1 = \frac{40}{\frac{21}{10}R} = \frac{400}{21R}$$

$$V_A - V_D = \frac{400}{21R} \times R = \frac{400}{21}$$

$$|V_A - V_B| = \left(\frac{400}{21} - 20 \right)$$

$$= \left| \frac{400 - 420}{21} \right| = \left| \frac{20}{21} \right|$$

2. Two light sources of 450 nm and 550 nm are used for YDSE with slit distance 2.25 mm and distance between the slits and screen is 1.5 m. Then the distance from central maxima for which minima of both wavelength coincide :

(1) 1.65 mm

(2) 1.55 mm

(3) 1.45 mm

(4) 1.85 mm

Ans. [1]

Sol. $y = (2n-1) \frac{\lambda D}{2d}$

$y_1 = y_2$

$(2n-1) \lambda_1 \frac{D}{2d} = (2m-1) \lambda_2 \frac{D}{2d}$

$\frac{(2n-1)}{2m-1} = \frac{\lambda_2}{\lambda_1} = \frac{550}{450} = \frac{11}{9}$

 So $n = 6, m = 5$

$y = 11 \times \frac{\lambda_1 D}{2d} = \frac{11 \times 450 \times 10^{-9} \times 1.5}{2 \times 2.25 \times 10^{-3}}$

$y = \frac{33}{2} \times 10^{-4}$

$y = 1.65 \text{ mm}$

3. The minimum deviation produced by a prism is equal to refracting angle of prism, then choose the range of refractive index (μ) of material of prism :

(1) $1 < \mu < \sqrt{2}$

(2) $1 < \mu < 2$

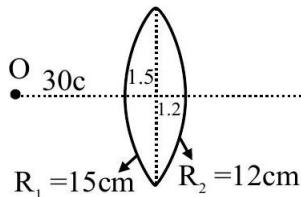
(3) $1 < \mu < 2\sqrt{2}$

(4) $1 < \mu < \sqrt{3}$

Ans. [1]

Sol. $\delta_{\min} = 2i - A \Rightarrow i = \delta_{\min} = A$

$i_{\max} = \frac{\pi}{2} \Rightarrow A_{\max} = \frac{\pi}{2}$


$\text{Also, } \mu = \frac{\sin\left(\frac{\delta_{\min} + A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$

$\Rightarrow \mu = \frac{\sin A}{\sin \frac{A}{2}} = 2 \cos\left(\frac{A}{2}\right)$

$\therefore \mu_{\max} = 2 \cos\left(\frac{\pi}{4}\right) = \sqrt{2}$

$\mu_{\min} = 1$

4. Find magnification due to lens :

(1) $m = +1$

(2) $m = -1$

(3) $m = +2$

(4) $m = -2$

Ans. [4]

Sol. $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_{\text{net}}} = \frac{1}{f_1} + \frac{1}{f_2}$

$\frac{1}{v} + \frac{1}{30} = 0.5 \left(\frac{1}{15} - \frac{1}{\infty} \right) + 0.2 \left(\frac{1}{\infty} + \frac{1}{12} \right)$

$$\frac{1}{v} + \frac{1}{30} = \frac{1}{30} + \frac{1}{60}$$

$$v = 60$$

$$m = \frac{v}{u} = \frac{60}{-30} = -2$$

5. Mass number of a nucleus is α and its radius is R_α . Radius of other nucleus of mass number β is R_β . If

$$\beta = 8\alpha \text{ then } \frac{R_\alpha}{R_\beta} ?$$

(1) $\frac{1}{4}$

(2) $\frac{1}{2}$

(3) $\frac{1}{8}$

(4) 2

Ans. [2]

Sol. $R_\alpha = R_0 \alpha^{1/3}$

$$R_\beta = R_0 \beta^{1/3}$$

$$\frac{R_\alpha}{R_\beta} = \left(\frac{\alpha}{\beta} \right)^{1/3} = \frac{1}{2}$$

6. (A) Equivalent capacitance is lower than least of capacitors present in series.
(B) One method of increasing the capacitance is to decrease the distance between plates and increasing cross section area:
(C) Electric field inside the isolated capacitor decreases after inserting dielectric
(D) Displacement of charge does not happen when a dielectric is inserted in isolated capacitor because dielectric acts like an insulator.
(E) Energy of isolated capacitor increases when a dielectric is inserted in capacitor.

Of the following statements which of the following are true.

(1) A, B, D

(2) C, D

(3) A, B, C, D

(4) A, B, C, E

Ans. [3]

Sol. Theoretical

7. Consider the following electromagnetic waves :

wave A :- wavelength = 400 nm

wave B :- frequency = 10^{16} Hz

wave C :- wave number = 10^4 cm $^{-1}$

order of energies is :

(1) A > B > C

(2) C > B > A

(3) B > A > C

(4) C > A > B

Ans. [3]

Sol. $\lambda_A = 400 \text{ nm} = 4 \times 10^{-7} \text{ m}$

$$\lambda_B = \frac{3 \times 10^8}{10^{16}} = 3 \times 10^{-8} \text{ m}$$

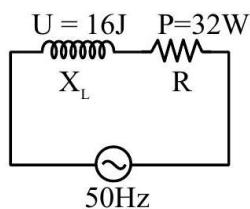
$$\lambda_C = 10^{-6} \text{ m}$$

$$\therefore E = \frac{hc}{\lambda} \Rightarrow \lambda \uparrow E \downarrow$$

19. Which of the following can not be measured :
 (1) Resistance (2) Voltage (3) Voltage difference (4) Displacement current

Ans. [2]
Sol. We can measure potential difference between two points but not voltage at any point.

20. Match the following as per dimensional formula.


(1)	Pressure	(P)	$M^1 L^{-1} T^{-1}$
(2)	Coefficient of viscosity	(Q)	$M^1 L^0 T^{-2}$
(3)	Surface Tension	(R)	$M^1 L^{-1} T^{-2}$
(4)	Surface energy	(S)	$M^1 L^2 T^{-2}$

(1) 1-R, 2-P, 3-Q, 4-S (2) 1-S, 2-Q, 3-R, 4-S (3) 1-R, 2-P, 3-S, 4-Q (4) 1-S, 2-Q, 3-Q, 4-S

Ans. [1]

21. In the given circuit, energy stored in the inductor is 16 J and power dissipated in resistance is 32 W.

Find value of $\frac{X_L}{R}$

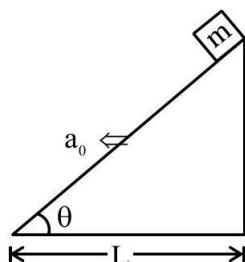
(1) 314

(2) 328

(3) 335

(4) 340

Ans. [1]

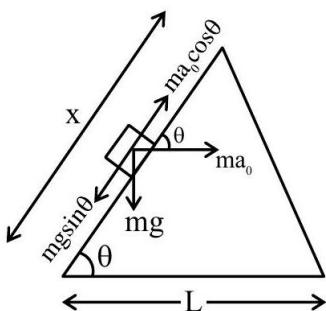

$$\frac{1}{2} L I_{rms}^2 = 16$$

$$i_{rms}^2 R = 32$$

$$\frac{L}{R} = 1$$

$$\frac{X_L}{R} = \frac{2\pi f L}{R} = 100\pi$$

22. Find time taken by the block to reach to the bottom



$$(1) \left[\frac{4L}{\cos\theta(g\sin\theta - a_0\cos\theta)} \right]^{1/2}$$

$$(2) \left[\frac{2L}{\cos\theta(g\sin\theta - a_0\cos\theta)} \right]^{1/2}$$

$$(3) \left[\frac{8L}{\cos\theta(g\sin\theta - a_0\cos\theta)} \right]^{1/2}$$

$$(4) \left[\frac{L}{\cos\theta(g\sin\theta - a_0\cos\theta)} \right]^{1/2}$$

Ans. [2]
Sol.

$$a_{\text{down}} = \frac{mgsin\theta - ma_0\cos\theta}{m}$$

$$a_{\text{down}} = g\sin\theta - a_0\cos\theta$$

$$x = ut + \frac{1}{2}a_{\text{down}}t^2$$

$$x = ut + \frac{1}{2}a_{\text{down}}t^2$$

$$\left[\frac{2L}{\cos\theta(g\sin\theta - a_0\cos\theta)} \right]^{1/2} = t$$

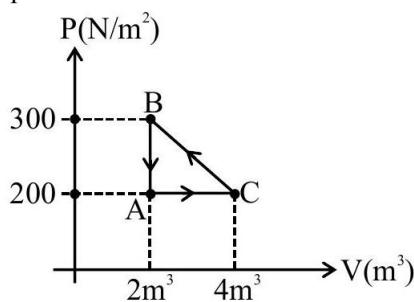
= time to reach bottom standing from rest.

23. Electric field of an EM wave is given as $\vec{E} = 54\sin(kz - \omega t)\hat{i}$. Then what will be its corresponding magnetic field?

(1) $18 \times 10^{-8}(kz - \omega t)\hat{j}$

(2) $162 \times 10^8 \sin(kz - \omega t)\hat{j}$

(3) $18 \times 10^{-8} \sin(\omega t - kz)\hat{j}$


(4) $54 \times 10^{-8} \sin(kz - \omega t)\hat{i}$

Ans. [1]
Sol. $\hat{B} = \hat{C} \times \hat{E} = \hat{k} \times \hat{i} = \hat{j}$

$$\therefore \vec{B} = \frac{54}{3 \times 10^8} \sin(kz - \omega t)\hat{j}$$

$$= 18 \times 10^{-8} \sin(kz - \omega t)\hat{j}$$

24. Find work done by gas in cyclic process :

(1) 100 J

(2) -100 J

(3) 200 J

(4) -200 J

Ans. [2]

Sol. $w_{AC} = P_A (\Delta V) = P_A (V_C - V_A)$

$$w_{AC} = (200)(4 - 2) = 400 \text{ Joule}$$

$$\frac{1}{2}(\mathbf{P}_1 + \mathbf{P}_2)(\mathbf{v}_1 - \mathbf{v}_2)$$

СВ 2 (С В) (С)

$$W_{CB} = -\frac{1}{2}(300 + 200)(2) = -\frac{500}{2} \times 2 = -500 \text{ Joule}$$

$$w_{BA} - \Gamma \Delta v = 0$$

$$W_{Net} = W_{AC} + W_{CB} + W_{BA}$$

$$W_{\text{Net}} = 400 - 500 + 0 = -100 \text{ Joule}$$

25. For particle moving in x direction according to

relation, $x = 4t^3 - 3t$

(a) at $t = 0.866$ $x = 0$

(b) direction of velocity particle remains same

(c) direction of velocity particle change at $x = -1$

(d) direction of velocity particle

(e) acceleration is non-m

Correct statements are :

(1)

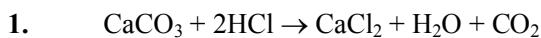
Sol. $x = 0, t = 0, \frac{\sqrt{3}}{2}$

$$V = 12t^2 - 3 \cdot V = 0$$

$$t = \frac{1}{2} \Rightarrow x = \frac{4}{8} - \frac{3}{2} = -1$$

$$a = 24t \quad (\text{always positive})$$

CAREER POINT


JEE Main Online Exam 2026

Memory Based

Questions & Solution

28th January 2026 | Evening

CHEMISTRY

In above reaction 90 g CaCO_3 is added to 300 ml, 38.55% w / w, HCl solution with density 1.13 g / ml. Which of the following option is correct.

(1) 64.97 gm of HCl gets reacted. (2) 65.7 gm of HCl remain unreacted.
(3) 64.97 g HCl remain unreacted. (4) 60 gm CaCO_3 remain unreacted.

Ans. [3]

Sol. LR

$$\frac{90}{100} \text{ d} = 1.13 \text{ g / ml}$$

$$= 0.90 \text{ mol } V = 300 \text{ ml}$$

$$\text{Wt. of solution} = 339 \text{ g}$$

$$\text{Wt. of HCl} = 339 \times \frac{38.55}{100} = 130.68$$

$$\text{Moles of HCl} = \frac{130.68}{36.5} = 3.58$$

Moles of HCl remained = 1.78 mole.

Mass of HCl remained = 64.97 g.

2. Consider the following electromagnetic waves A, B and C :

(i) The wavelength of A is 400 nm.
(ii) The frequency of B is 10^{16} s^{-1} .
(iii) Wave number of C = 10^4 cm^{-1} .

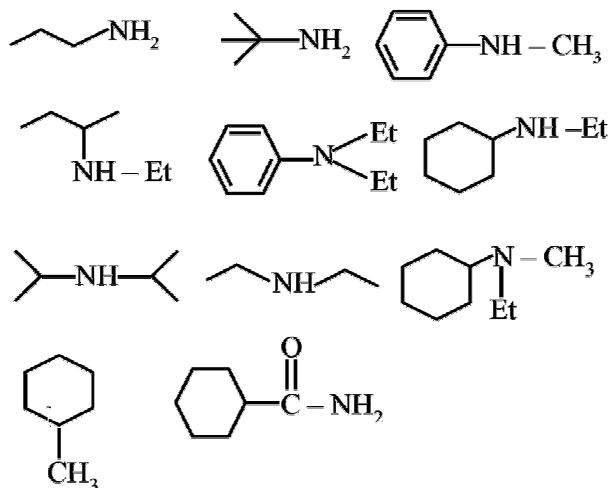
The correct order of their energies is :

(1) A > B > C (2) B > A > C (3) B > C > A (4) C > A > B

Ans. [2]

Sol. (1) Wavelength of A = 400 nm.

$$(2) v = \frac{C}{\lambda} \Rightarrow \text{wavelength of B}(\lambda) = \frac{3 \times 10^8}{10^{16}} = 3 \times 10^{-8} = 30 \times 10^{-9} = 30 \text{ nm.}$$


$$(3) \text{Wavelength of C}(\lambda) = \frac{1}{v} = \frac{1}{10^4} = 10^{-4} \text{ cm} = 10^{-6} \text{ m} = 1000 \text{ nm}$$

Here $\lambda_C > \lambda_A > \lambda_B$

$$E \propto \frac{1}{\lambda}$$

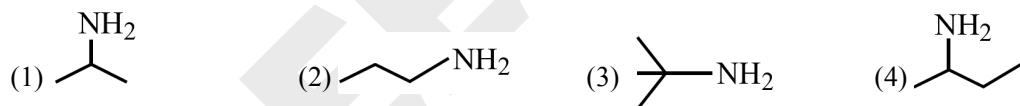
So $E_C < E_A < E_B$

3. Which of the following are insoluble in alkali when reacts with Hinsberg reagent :

Ans. [2]

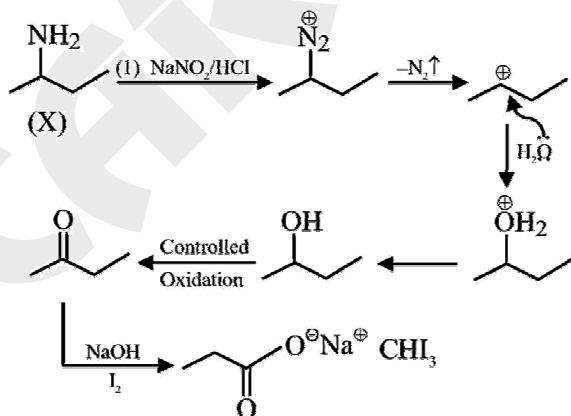
Sol. Secondary amine are insoluble alkali after reaction with Hinsberg reagent.

4. $'X' \xrightarrow[(2) \text{ H}_2\text{O}]{(1) \text{ NaNO}_2/\text{HCl}} \xrightarrow{\text{NaOH}} \text{I}_2 \rightarrow 'Y'$


(gives positive iodoform test) :

X has % C = 65.75 %

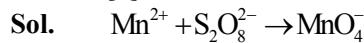
$$\% \text{ H} = 15.25 \%$$


% N = 19 %

Identify 'X' among the following

Ans. [4]

Sol.


5. Consider following statements :

(A) KMnO_4 is diamagnetic while K_2MnO_4 is paramagnetic.
 (B) Manganate ion contains Mn^{+6} while permanganate ion contains Mn^{+7} .
 (C) Mn^{+2} ion on reaction with $\text{S}_2\text{O}_8^{2-}$ ions gives manganate ion.
 (D) Both MnO_4^- and MnO_4^{2-} are tetrahedral.

Correct statements are :-

(1) A & B only (2) A, B and D only (3) A, B and C only (4) B and D only

Ans. [2]

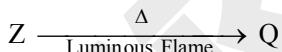
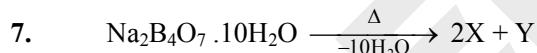
So, (C) is incorrect.

6. Match isostructural species in Column I with Column II.

Column-I	Column-II
(A) XeF_2	(P) I_3^-
(B) XeOF_4	(Q) NH_3
(C) XeO_2F_2	(R) SF_4
(D) XeO_3	(S) BrF_5

The correct match is :

(1) A \rightarrow P, B \rightarrow S, C \rightarrow R, D \rightarrow Q (2) A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S
 (3) A \rightarrow S, B \rightarrow R, C \rightarrow Q, D \rightarrow P (4) A \rightarrow S, B \rightarrow Q, C \rightarrow R, D \rightarrow P

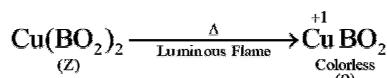
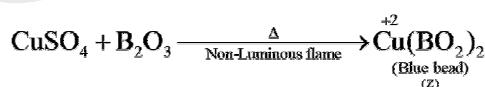
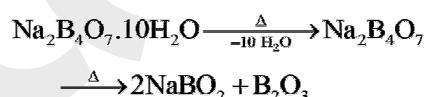


Ans. [1]

Sol. XeF_2 & I_3^- : 2 bond pair 3 lone pair

XeOF_4 & BrF_5 : 5 bond pair 1 lone pair

XeO_2F_2 & SF_4 : 4 bond pair 1 lone pair

XeO_3 & NH_3 : 3 bond pair 1 lone pair

Oxidation state of central metal of Z and Q are :

(1) +2 and +1 (2) +1 and +2 (3) +2 and +2 (4) +1 and +1

Ans. [1]

Sol.

Oxidation states of Cu in Z and Q are +2 & +1

8. (A) $[\text{MnBr}_4]^{2-}$ (B) $[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$
(C) $[\text{Ni}(\text{CN})_4]^{2-}$ (D) $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$

Select correct order of spin only magnetic moment among above complexes.

(1) A > D > B > C (2) D > A > C > B (3) D > B > A > C (4) A > B > D > C

Ans. [1]

Sol. $\text{Mn}^{2+} 3d^5 \quad n = 5$

$\text{Cu}^{2+} 3d^9 \quad t_{2g}^{2,2,2} \quad e_g^{2,1} \quad n = 1$

$\text{Ni}^{2+} 3d^8$ square planar $n = 0$

$\text{Ni}^{2+} 3d^8$ tetrahedral $e_g^{2,2} \quad t_{2g}^{2,1,1} \quad n = 2$

9. The plot of $\log K$ versus $1/T$ is a straight line. The intercept and slope of this line are respectively given by _____ . (Where K is the equilibrium constant).

(1) $\frac{\Delta S^\circ}{2.303R}, \frac{-\Delta H^\circ}{2.303R}$ (2) $\frac{\Delta S^\circ}{R}, \frac{-\Delta H^\circ}{R}$ (3) $-\frac{\Delta S^\circ}{2.303R}, \frac{\Delta H^\circ}{2.303R}$ (4) $-\frac{\Delta H^\circ}{2.303R}, \frac{\Delta S^\circ}{2.303R}$

Ans. [1]

Sol. $\log K = -\frac{\Delta H^\circ}{2.303RT} + \frac{\Delta S^\circ}{2.303R}$

Slope $= -\frac{\Delta H^\circ}{2.303R}$,

y-intercept $= \frac{\Delta S^\circ}{2.303R}$

10. Out of N, P, S, Cl, F number of valence electrons in least metallic element and most metallic element respectively is :

(1) 5, 7 (2) 7, 5 (3) 6, 5 (4) 5, 6

Ans. [2]

Sol. Least metallic = F, valence electrons = 7

Most metallic = P, valence electrons = 5

11. Among Sc^{3+} , Cr^{2+} , Mn^{3+} , Fe^{3+} , Co^{3+} , 'n' is the number of isoelectronic species. 'n' moles of AgNO_3 reacts with 1 mole of complex $\text{Co}(\text{en})_2\text{NH}_3\text{Cl}_3$. The number of electrons in t_{2g} set of the complex is :

Ans. [6]

Sol. Cr^{2+} and Mn^{3+} are isoelectronic

$n = 2$

Complex is : $[\text{Co}(\text{en})_2\text{NH}_3\text{Cl}]\text{Cl}_2$

$\Rightarrow \text{Co}^{3+} 3d^6 \quad t_{2g}^{2,2,2} \quad e_g^{0,0}$

12. The relation between molar conductivity and concentration is given by $\Lambda_m = \Lambda_m^0 - A\sqrt{c}$.

For various solution concentrations of 0.04 M, 0.09 M, 0.01 M and 0.16 M, the corresponding molar conductivities are 95.7, 95.3, 94.9 and 94.5 $\text{S cm}^2\text{mol}^{-1}$, respectively. Using the given data, determine the value of A.

Ans. [4]

Sol. Using equation : $\Lambda_m = \Lambda_m^0 - A\sqrt{c}$

$$95.7 = \Lambda_m^0 - A\sqrt{0.04}$$

$$95.7 = \Lambda_m^0 - A \times 0.2 \quad \dots(1)$$

$$95.3 = \Lambda_m^0 - A \times \sqrt{0.09}$$

$$95.3 = \Lambda_m^0 - A \times 0.3 \quad \dots(2)$$

From eq. (1) and eq. (2)

$$A = 4$$

13. Statement-I : KMnO_4 is a good reducing agent.

Statement-II : KMnO_4 reduces nitrite, oxalate and iodide ions.

(1) Both statements are correct.

(2) Both statements are incorrect.

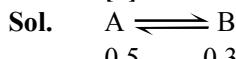
(3) Statement I is correct while Statement II is incorrect.

(4) Statement I is incorrect while Statement II is correct.

Ans. [2]

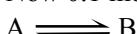
Sol. KMnO_4 is a good oxidizing agent and it oxidises NO_2^- , $\text{C}_2\text{O}_4^{2-}$ and I^- ions.

14. For the reaction $\text{A} \rightleftharpoons \text{B}$, the number of moles of A and B at equilibrium in a 1 L vessel are 0.50 and 0.375, respectively. If 0.10 mol of A is added further, determine the number of moles of A and B at the new equilibrium.


$$(1) 0.557, 0.557$$

$$(2) 0.418, 0.557$$

$$(3) 0.33, 0.56$$


$$(4) 0.6, 0.2$$

Ans. [1]

$$K_{\text{eq}} = \frac{[\text{B}]_{\text{eq}}}{[\text{A}]_{\text{eq}}} = \frac{0.375}{0.5} = 0.75$$

Now 0.1 mole of A is added so reaction will move in forward direction.

$$\begin{array}{cc} 0.6-x & 0.375+x \end{array}$$

$$K_{\text{eq}} = 0.75 = \frac{0.375+x}{0.6-x}$$

$$0.45 - 0.75x = 0.375 + x$$

$$1.75x = 0.075$$

$$x = \frac{0.075}{1.75} = \frac{3}{70} = 0.043$$

$$\text{Moles of A} = 0.043 = 0.557$$

$$\text{Moles of B} = 0.418$$

15. The reactions $\text{A} \xrightarrow{K_1} \text{B}$ and $\text{C} \xrightarrow{K_2} \text{D}$ follows 1st order kinetics. At 500 K, rate constant K_1 and K_2 respectively ($K_2 = 2K_1$) and activation energies E_{a_1} and E_{a_2} are related such that $E_{a_2} = \frac{E_{a_1}}{2}$ and rate constant for first reaction at 300 K is half that of rate constant at 500 K. Find the value of $10 \times (K_2)_{\text{at } 300 \text{ K}}$. (Given half-life of 1st reaction is 2 hrs. at 500 K)

Ans. [5]
Sol. For $A \rightarrow B$

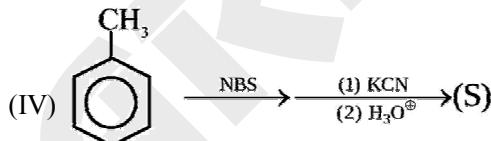
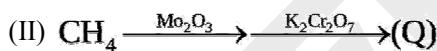
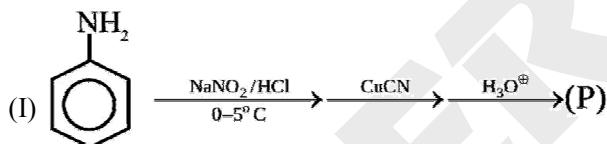
$$\ln(2) = \frac{E_{a_1}}{R} \left[\frac{1}{300} - \frac{1}{500} \right]$$

$$E_{a_1} = \frac{\ln 2 \times R \times 1500}{2}$$

$$E_{a_2} = \frac{E_{a_1}}{2} = \frac{\ln 2 \times R \times 1500}{4}$$

$$(K_1)_{\text{at } 500 \text{ K}} = \frac{\ln 2}{2}$$

$$(K_2)_{\text{at } 500 \text{ K}} = \ln 2$$




 Now for $C \rightarrow D$

$$\ln \left[\frac{(K_2)_{\text{at } 500 \text{ K}}}{(K_2)_{\text{at } 300 \text{ K}}} \right] = \left(\frac{\ln 2 \times R \times 1500}{4} \right) \times \frac{1}{R} \times \left[\frac{1}{300} - \frac{1}{500} \right]$$

$$(K_2)_{\text{at } 300 \text{ K}} = \frac{\ln 2}{\sqrt{2}} = 0.49$$

$$(K_2)_{\text{at } 300 \text{ K}} \times 10 = 4.9 \approx 5$$

16. Find correct order of acidic strength in the following reaction product P, Q, R & S

(1) P > Q > R > S (2) Q > P > S > R (3) Q > S > P > R (4) R > S > P > Q

Ans. [2]
Sol. Product of I is PhCOOH

Product of II is HCOOH

 Product of III is $\text{H}_3\text{C}-\text{CH}_2\text{COOH}$

 Product of IV is $\text{Ph}-\text{CH}_2\text{COOH}$

 Order of acidic strength $\text{HCOOH} > \text{PhCOOH} > \text{Ph}-\text{CH}_2\text{COOH} > \text{CH}_3\text{CH}_2\text{COOH}$

17. **Solution-1** : 2.025 gm glucose, 125 ml .

Solution-2 : 9 gm urea, 500 ml .

Solution-3 : 1.9 gm CaCl_2 , 250 ml..

Solution-4 : 20.5 gm $\text{Al}_2(\text{SO}_4)_3$, 750 ml..

Order of ΔT_b is :

(1) $\text{Al}_2(\text{SO}_4)_3 > \text{Urea} > \text{CaCl}_2 > \text{Glucose}$

(3) Glucose > $\text{Al}_2(\text{SO}_4)_3 > \text{CaCl}_2 > \text{Urea}$

(2) $\text{Al}_2(\text{SO}_4)_3 > \text{CaCl}_2 > \text{Urea} > \text{Glucose}$

(4) $\text{CaCl}_2 > \text{Urea} > \text{Glucose} > \text{Al}_2(\text{SO}_4)_3$

Ans. [1]

Sol. $\Delta T_b = i \cdot k_b \cdot m$

For dilute solution ($M = m$)

Molarity	$i \times m$
$M_{\text{glucose}} = \frac{0.025}{180} \times \frac{1000}{125} = 0.09$	0.09×1
$M_{\text{urea}} = \frac{9}{60} \times \frac{1000}{500} = 0.3$	0.3×1
$M_{\text{CaCl}_2} = \frac{1.9}{111} \times \frac{1000}{250} = 0.068$	0.068×3
$M_{\text{Al}_2(\text{SO}_4)_3} = \frac{20.5}{342} \times \frac{1000}{750} \approx 0.08$	0.08×5

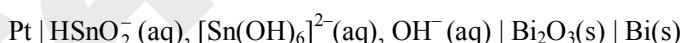
Order of $\Delta T_b = \text{Al}_2(\text{SO}_4)_3 > \text{Urea} > \text{CaCl}_2 > \text{Glucose}$

18. In 'S' estimation, 0.314 g of organic compound gave 0.4813 g of barium sulphate. What is percentage (%) of 'S' in organic compound? (Report to nearest integer)

Ans. [21]

Sol. Applying POAC as 's'

$$n_{\text{BaSO}_4} = \frac{0.4813}{233} = 0.0020$$


Moles of 's' = 0.0020

Mass of 's' in $\text{BaSO}_4 = 0.0020 \times 32 = 0.066$ g

Same mass of 's' is present in 'OC'

$$\% \text{ of 's' in OC} = \frac{0.066}{0.314} \times 100 = 20.9$$

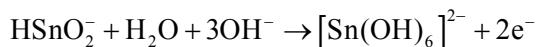
19. E_{cell} of the following cell is 345.5 mV. The cell representation is

0.5M 0.05M

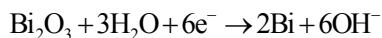
$$\text{Given : } E_{[\text{Sn}(\text{OH})_6]^{2-}/\text{HSnO}_2^-}^{\circ} = -0.9 \text{ V}$$

$$E_{\text{Bi}_2\text{O}_3(\text{s})|\text{Bi}(\text{s})}^{\circ} = -0.44 \text{ V}$$

OH^- ion concentration is maintained by a buffer solution of x ml, 20 M NaHCO_3 (aq) and 10 ml, 10 M H_2CO_3 (aq), then find value of $\frac{x}{1000}$?


Ans. [5]

Sol. Pt | HSnO_2^- (aq), $[\text{Sn}(\text{OH})_6]^{2-}$ (aq), OH^- (aq) | Bi_2O_3 (s) | Bi(s)


0.5M 0.05M

$$E^\circ_{\text{cell}} = +0.9 - 0.44 = 0.46 \text{ V}$$

Oxidation Half :

Reduction Half :

$$E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{6} \log \left[\frac{(0.05)^3}{(0.5)^3 \times [\text{OH}^-]^3} \right]$$

$$0.3455 = 0.46 - \frac{0.059}{6} \times 3 \log \left[\frac{0.1}{[\text{OH}^-]} \right]$$

$$0.0295 [-1 + \text{pOH}] = 0.1145$$

$$-1 + \text{pOH} = 3.88$$

$$\text{pOH} = 4.88$$

$$\text{pH} = 14 - 4.88 = 9.12$$

$$\text{pH} = \text{pK}_{\text{a}_1} + \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]}$$

$$9.12 = 6.12 + \log \frac{20x}{100}$$

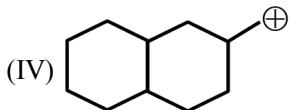
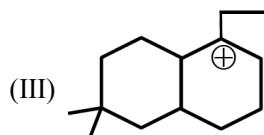
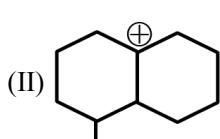
$$3 = \log \frac{x}{5}$$

$$x = 5 \times 10^3 \text{ ml}$$

$$\frac{x}{1000} = \frac{5 \times 10^3}{1000} = 5$$

20. When nitro group is attached to benzene ring, what effect we observe towards reactions :

- (I) Deactivating towards electrophilic substitution
- (II) Activating towards electrophilic substitution
- (III) Deactivating towards nucleophilic substitution
- (IV) Activating towards nucleophilic substitution




Find the correct statements :

- (1) I, II
- (2) II, III
- (3) I, IV
- (4) II, IV

Ans. [3]

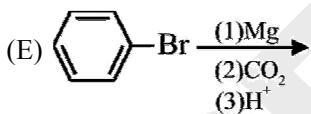
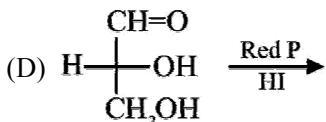
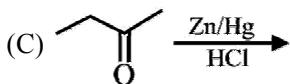
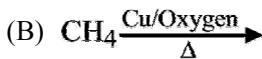
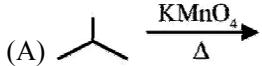
Sol. Nitro group is electron withdrawing group so it will decrease electron density from benzene ring. So, it is deactivating towards electrophilic substitution reaction (ESR) and it increases the electrophilicity of benzene ring so it is activating towards nucleophilic substitution reaction (NSR).

21. Which pair among following compounds have equal number of hyperconjugation:

(1) I, II, III

(2) I, III, V

(3) I, II, V






(4) II, III, V

Ans.

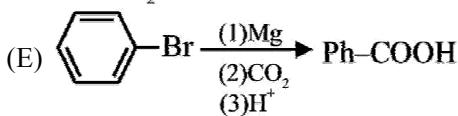
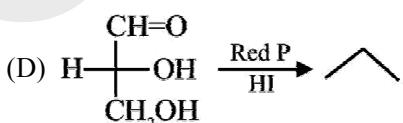
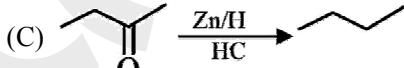
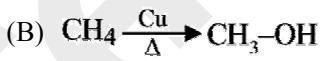
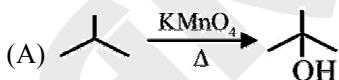
[1]

Sol. Number of hyperconjugation is directly related to number of α -H with respect to carbocation.

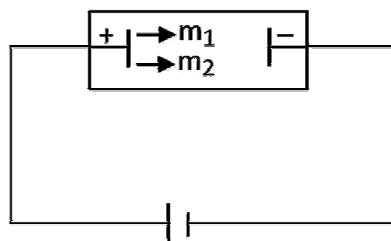
22. Which of the following reaction yield alcohol as major product :

(1) A,B,C,D,E

(2) A,B






(3) A,B,C,E

(4) B,C


Ans.

[2]

Sol.

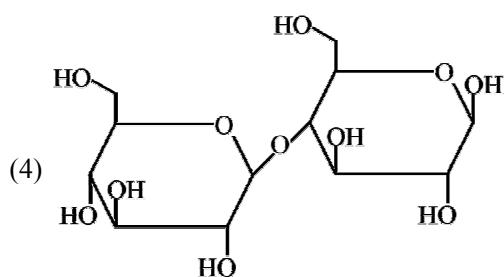
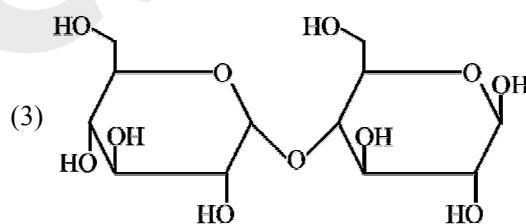
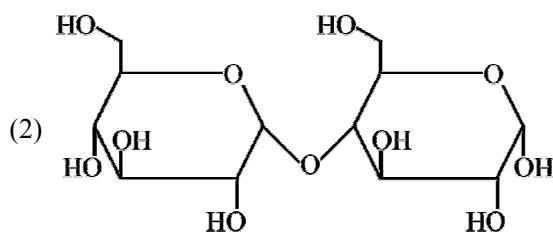
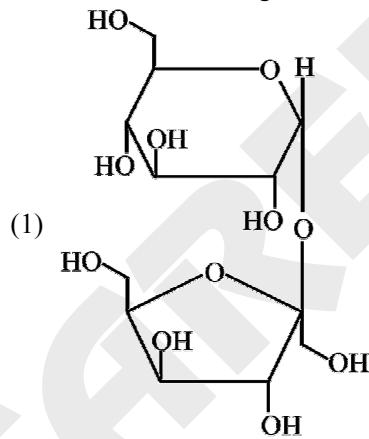
23. Two positively charged particles are accelerated by 200 keV. The masses of particles are $m_1 = 1$ amu, $m_2 = 4$ amu.

If the De-broglie wavelength $(\lambda_d)_{m_1}$ is x times of the second particle $(\lambda_d)_{m_2}$. Then determine the value of x .

Ans. [2]

Sol.
$$\lambda_d = \frac{h}{\sqrt{2mKE}}$$

Here KE is same i.e. 200 k eV





So $\lambda_d \propto \frac{1}{\sqrt{m}}$

$$\frac{(\lambda_d)_{m_1}}{(\lambda_d)_{m_2}} = \sqrt{\frac{m_2}{m_1}} = \sqrt{4} = 2$$

$$(\lambda_d)_{m_1} = 2(\lambda_d)_{m_2}$$

So $x = 2$.

24. Which of the following is nonreducing sugar?

Ans. [1]

Sol. For nonreducing sugar compound should have acetal linkage $\left[\begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} \text{OR} \\ \text{OR} \end{array} \right]$, not hemeacetal linkage $\left[\begin{array}{c} \diagup \\ \diagdown \end{array} \begin{array}{c} \text{OR} \\ \text{OH} \end{array} \right]$
Sucrose is non reducing sugar.

25. **Statement-I :** The boiling point order is $\text{HF} > \text{HI} > \text{HBr} > \text{HCl}$

Statement-II : The melting point order is $\text{HI} > \text{HF} > \text{HBr} > \text{HCl}$

- (1) Both statements are correct.
- (2) Both statements are incorrect.
- (3) Statement I is correct while Statement II is incorrect.
- (4) Statement I is incorrect while Statement II is correct.

Ans. [1]

Sol. B.P. $\text{HF} > \text{HI} > \text{HBr} > \text{HCl}$

M.P. $\text{HI} > \text{HF} > \text{HBr} > \text{HCl}$

JEE Main Online Exam 2026

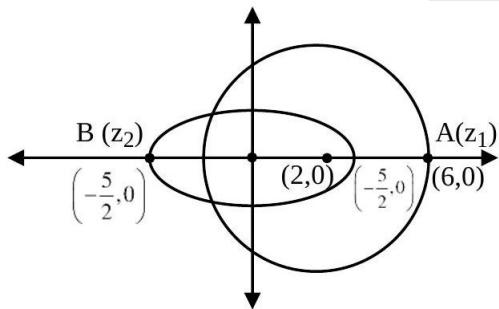
Memory Based Questions & Solution 28th January 2026 | Evening

MATHEMATICS

1. Find the maximum distance between the two curves :

$$|z - 2| = 4 \text{ & } |z - 2| + |z + 2| = 5$$

$$(1) \frac{17}{2} \quad (2) \frac{15}{2}$$


$$(3) 8 \quad (4) 9$$

Ans. [1]

Sol. $|z - 2| = 4 \Rightarrow (x - 2) + y^2 = 16$

$$|z - 2| + |z + 2| = 5 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\Rightarrow \frac{4x^2}{25} + \frac{4y^2}{9} = 1$$

$$\text{Maximum value of } |z_1 - z_2| = 6 + \frac{5}{2} = \frac{17}{2}$$

2. If $f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) dt$ & $g(x) = \int_0^x (f(t) + 2)^{11} (t+12)^{17} (t-4)^4 dt$. If local minima and local maxima of $g(x)$ at $x = p$ & $x = q$ respectively then $|p| + q =$

$$(1) 12 \quad (2) 15 \quad (3) 9 \quad (4) 20$$

Ans. [2]

Sol. $f(x) = 1 - 2x + e^x \int_0^x e^{-t} f(t) dt$

$$e^{-x} f(x) = (1 - 2x) e^{-x} + \int_0^x e^{-t} f(t) dt$$

$$e^{-x} f'(x) - e^{-x} f(x) = -2e^{-x} + (1 - 2x) e^{-x} (-1) + e^{-x} f(x)$$

$$f'(x) - 2f(x) = 2x - 3$$

$$\frac{dy}{dx} - 2y = 2x - 3$$

$$\Rightarrow y \cdot e^{-2x} = \int e^{-2x} (2x - 3) dx$$

On solving we get

$$y = 1 - x$$

$$g'(x) = (3-x)^{11}(x+12)^{17}(x-4)^4$$

$\begin{array}{c} - \\ -12 \end{array} \quad \begin{array}{c} + \\ 3 \end{array} \quad \begin{array}{c} - \\ \end{array}$

minima at $x = -12$ & maxima at $x = 3$

$$p = -12, q = 3$$

$$\Rightarrow |p| + q = 15$$

3. Let $y(x)$ is the solution of differential equation, $\frac{xdy}{dx} = y + x^2 \cot x$, $y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, the value of $6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right)$ equals :

Ans. [1]

Sol.

(۲)

$$x^2 d\left(\frac{y}{x}\right) = x^2 \cot x dx$$

$$d\left(\frac{y}{x}\right) = \cot x dx$$

$$\int d\left(\frac{y}{x}\right) = \int \cot x dx$$

$$\frac{y}{x} = \log_e \sin x + C$$

$$\text{given } y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$$

$$\Rightarrow c = 1$$

$$y = x(\log_e \sin x + 1)$$

$$y\left(\frac{\pi}{6}\right) = \frac{\pi}{6}[-\log_e 2 + 1]$$

$$y\left(\frac{\pi}{4}\right) = \frac{\pi}{4} \left[-\frac{1}{2} \log_e 2 + 1 \right]$$

$$6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right)$$

$$= \pi \left[(-\log_e 2 + 1) + 2 \left(\frac{1}{2} \log_e 2 - 1 \right) \right]$$

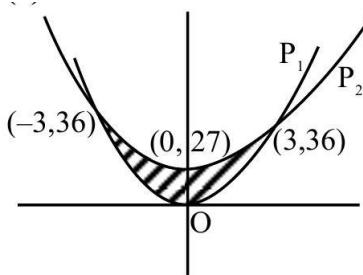
$$= \pi[1-2] = -\pi$$

4. Consider two parabolas P_1, P_2 and a line L

$$P_1 : y = 4x^2 ; P_2 : y = x^2 + 27 \text{ & line } L : y = \alpha x$$

If area bounded by P_1 & P_2 is six times the area bounded by P_1 and L then find α

(1) 16


(2) 18

(3) 20

(4) 12

Ans. [4]

Sol.

Area bounded between P_1 & P_2 is

$$\int_{-3}^3 ((x^2 + 27) - (4x^2)) dx$$

(P.O.I. of P_1 & P_2 is $x = \pm 3$)

$$= 2 \int_0^3 (27 - 3x^2) dx = 2 \left[27x - x^3 \right]_0^3$$

$$= 2[81 - 27] = 108$$

\therefore Area bounded between P_1 & L is 18 sq. units

(Area between $x^2 = 4$ ay & line $x = my$) is $\frac{8a^2}{3m^3}$

\therefore Area between $x^2 = \frac{y}{4}$ & $x = \frac{y}{\alpha}$ is

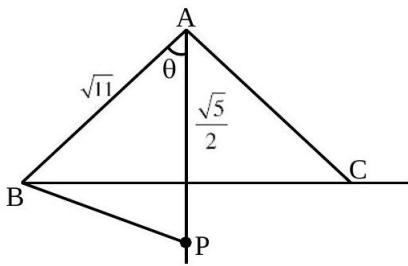
$$\frac{8 \cdot \left(\frac{1}{16}\right)^2}{3 \cdot \left(\frac{1}{\alpha}\right)^3} = 18$$

$$\Rightarrow \frac{\frac{8}{16 \cdot 16}}{\frac{3}{\alpha^3}} = 18 \Rightarrow \alpha^3 = 2^6 \cdot 3^3$$

$$\Rightarrow \alpha = 12$$

5. Let $\overline{AB} = 3\hat{i} + \hat{j} - \hat{k}$ and $\overline{AC} = \hat{i} - \hat{j} + 3\hat{k}$. If P is the point on the bisector of angle between \overline{AB} and \overline{AC} such that $|\overline{AP}| = \frac{\sqrt{5}}{2}$. Then area (ΔAPB) is :

(1) $\sqrt{30}$


(2) $\sqrt{15}$

(3) $\frac{\sqrt{30}}{4}$

(4) $\frac{\sqrt{15}}{4}$

Ans. [3]

Sol. $\cos 2\theta = \frac{3-1-3}{\sqrt{11} \cdot \sqrt{11}} = -\frac{1}{11}$

$$1 - 2\sin^2\theta = -\frac{1}{11} \Rightarrow 2\sin^2\theta = \frac{12}{11} \Rightarrow \sin\theta = \sqrt{\frac{6}{11}}$$

$$\therefore \text{Area}(\Delta APB) = \frac{1}{2} \times \sqrt{11} \cdot \frac{\sqrt{5}}{2} \cdot \sqrt{\frac{6}{11}} = \frac{\sqrt{30}}{4}$$

6. Find the value of $\tan\left[\left(2\sin^{-1}\frac{2}{\sqrt{13}}\right) - 2\cos^{-1}\left(\frac{3}{\sqrt{10}}\right)\right]$

(1) $\frac{31}{56}$ (2) $\frac{29}{56}$ (3) $\frac{33}{56}$ (4) $\frac{37}{56}$

Ans. [3]

Sol. Let $\sin^{-1}\frac{2}{\sqrt{13}} = \theta$ & $\cos^{-1}\frac{3}{\sqrt{10}} = \phi$

$$\sin\theta = \frac{2}{\sqrt{13}} \text{ & } \cos\phi = \frac{3}{\sqrt{10}}$$

$$\tan(2\theta - 2\phi) = \frac{\tan 2\theta - \tan 2\phi}{1 + \tan 2\theta \tan 2\phi}$$

$$\left(\because \tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta} \right)$$

$$\begin{aligned} &= \frac{\frac{12}{5} - \frac{3}{4}}{1 + \frac{12}{5} \cdot \frac{3}{4}} \\ &= \frac{33}{56} \end{aligned}$$

7. Find the value of $\frac{6}{3^{26}} + 10 \cdot \frac{1}{3^{25}} + 10 \cdot \frac{2}{3^{24}} + \dots + 10 \times \frac{2^{24}}{3^1}$:

(1) 2^{26} (2) 2^{25} (3) 2^{24} (4) 2^{27}

Ans. [1]

Sol. $S = \frac{6}{3^{26}} + \frac{10}{3^{25}} \left[\frac{(6)^{25} - 1}{6 - 1} \right]$

$$S = \frac{6}{3^{26}} + \frac{10}{3^{25}} \left[\frac{6^{25} - 1}{5} \right]$$

$$S = \frac{2}{3^{25}} + 2 \left[2^{25} - \frac{1}{3^{25}} \right]$$

8. If ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$ and hyperbola $\frac{x^2}{16} - \frac{y^2}{\lambda^2} = -1$ have same foci. If eccentricity and length of latus rectum of hyperbola are e and ℓ respectively then value of $24(e + \ell) =$

Ans. [3]

Sol. Equation of hyperbola: $\frac{y^2}{\lambda^2} - \frac{x^2}{16} = 1$

$$\text{Equation of ellipse : } \frac{x^2}{144} + \frac{y^2}{169} = 1$$

$$e' = \sqrt{1 - \frac{144}{169}} = \frac{5}{13}$$

focus $\Rightarrow (0, 5)$

$$\Rightarrow \lambda \sqrt{1 + \frac{16}{\lambda^2}} = 5$$

$$\Rightarrow \lambda^2 + 16 = 25$$

$$\lambda = 3$$

$$\text{Eccentricity of hyperbola} = \sqrt{1 + \frac{16}{9}} = \frac{5}{3}$$

$$\text{Length of latus rectum of hyperbola} = \frac{2(16)}{3} = \frac{32}{3}$$

$$24(e + \ell) = 24 \left[\frac{5}{3} + \frac{32}{3} \right] = 8 \times 37 = 296$$

9. If $y = \operatorname{sgn}(\sin x) + \operatorname{sgn}(\cos x) + \operatorname{sgn}(\tan x) + \operatorname{sgn}(\cot x)$ where $\operatorname{sgn}(p)$ denotes the signum function of p , then sum of elements in the range of y is :

Ans. [4]

Sol. $x \in (0, \pi/2) \Rightarrow y = 1 + 1 + 1 + 1 = 4$

$$x \in (\pi/2, \pi) \Rightarrow y = 1 - 1 - 1 - 1 = -2$$

$$x \in (\pi, 3\pi/2) \Rightarrow y = -1 - 1 + 1 + 1 = 0$$

$$x \in (\pi, 3\pi/2) \Rightarrow y = -1 - 1 + 1 + 1 = 0$$

∴ Range of y is $\{-2, 0, 4\}$

$$\text{Required sum} = -2 + 0 + 4 = 2$$

Ans. [3]

Sol. $A^2 = A \cdot A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$

$$A^3 = A^2 \cdot A = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 7 & -12 \\ 3 & -5 \end{pmatrix}$$

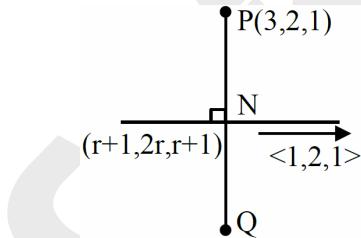
•
•
•

$$A^n = \begin{pmatrix} 2n+1 & -4n \\ n & -(2n-1) \end{pmatrix}$$

$$A^{100} = \begin{pmatrix} 201 & -400 \\ 100 & -199 \end{pmatrix}$$

$$A^{100} - I = \begin{pmatrix} 200 & -400 \\ 100 & -200 \end{pmatrix} = 100 B$$

$$B = \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix}$$

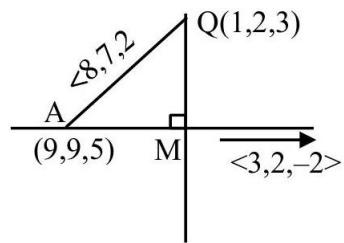

$$B^2 = B \cdot B = \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Sum of all elements in B^{100} is zero

11. If the image of a point $P(3,2,1)$ in the line $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{1}$ is Q then distance of Q from the line $\frac{x-9}{3} = \frac{y-9}{2} = \frac{z-5}{-2}$ is

Ans. [4]

Sol.


dr's of PN = $\langle r - 2, 2r - 2, r \rangle$

$$1.(r-2) + 2(2r-2) + 1.(r) = 0$$

$$6r = 6 \Rightarrow r = 1$$

$$\therefore N \equiv (2,2,2)$$

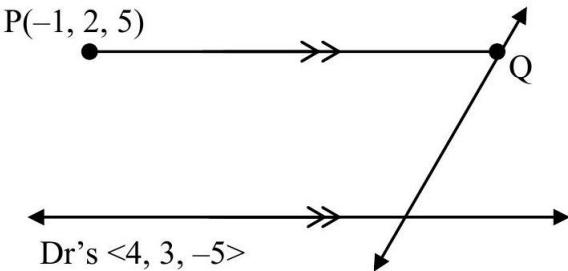
$$\Rightarrow Q \equiv (1, 2, 3)$$

$$AQ = \sqrt{64 + 49 + 4} = \sqrt{117}$$

$$AM = \frac{|24 + 14 - 4|}{\sqrt{9 + 4 + 4}} = \frac{34}{\sqrt{17}} = 2\sqrt{17}$$

$$\therefore \text{QM} = \sqrt{117 - 68} = \sqrt{49} = 7$$

12. Let L be the distance of point $P(-1,2,5)$ from the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z+1}{1}$ measured parallel to a line having direction ratios $4, 3, -5$, then L^2 is equal to :
 (1) 30 (2) 55 (3) 50 (4) 20


Ans.

[3]

(2) 55 (3) 50

(4) 20

$$\text{Sol.} \quad \frac{x-1}{2} = \frac{y-3}{2} = \frac{z+1}{1}$$

Let point Q be $(2\lambda + 1, 2\lambda + 3, \lambda - 1)$

Now Dr's of PQ $(2\lambda + 2), (2\lambda + 1), (\lambda - 6)$

So according to question $\frac{2\lambda+2}{4} = \frac{2\lambda+1}{3} = \frac{\lambda-6}{-5}$

$$\Rightarrow \lambda = 1$$

$$\Rightarrow \text{Point } Q \equiv (3, 5, 0)$$

$$\Rightarrow L^2 = 16 + 9 + 25 = 50$$

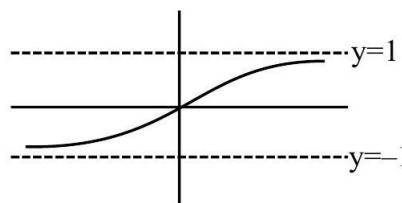
13. A lift is going upto 10th floor. Number of ways in which 3 people can exit the lift at three different floors if the lift will not stop at Ist, IInd and IIIrd floor is

Ans. [1]

Sol. Number of ways $= {}^7C_3 \times 3! = 7 \times 6 \times 5 = 210$

14. **Statement 1 :** The function f defined from $R \rightarrow R$ given by $f(x) = \frac{x}{1+|x|}$ is one-one.

Statement 2 : The function f defined by $R \rightarrow R$ given by $f(x) = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$ is many-one.


Which of the following is correct?

- (1) Both Statements are correct
- (2) Both Statements are false
- (3) Statement 1 is false and Statement 2 is correct
- (4) Statement 1 is correct and Statement 2 is false

Ans. [1]

Sol. **Statement 1:** $f(x) = \frac{x}{1+|x|}$

$$f(x) = \begin{cases} \frac{x}{1+x} & x \geq 0 \\ \frac{x}{1-x} & x < 0 \end{cases}$$

$f(x)$ is one-one

Statement 2: $f(x) = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$, $f(0) = \frac{-30}{18} = \frac{-5}{3}$

$$\frac{-5}{3} = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$$

On solving $x = 0, -1$

$$\Rightarrow f(0) = f(-1) = \frac{-5}{3}$$

$\therefore f(x)$ is many-one

15. The sum of coefficients of x^{499} and x^{500} in the expression :

$(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$ is:

(1) ${}^{1001}C_{500}$ (2) ${}^{1003}C_{501}$ (3) ${}^{1002}C_{500}$ (4) ${}^{1004}C_{502}$

Ans. [3]

Sol. $S = (1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$

$$= (1+x)^{1000} \frac{\left(1 - \left(\frac{x}{1+x}\right)^{1001}\right)}{1 - \frac{x}{1+x}}$$

$$= (1+x)^{1001} - x^{1001}$$

$$\text{Required sum} = {}^{1001}C_{499} + {}^{1001}C_{500} = {}^{1002}C_{500}$$

16. A circle $x^2 + y^2 = 4$ intersects x -axis at $A(-2,0)$ and $B(2,0)$ respectively. If two variable points $P(2\cos\alpha, 2\sin\alpha)$ & $Q(2\cos\beta, 2\sin\beta)$ varies on the circle such that $\alpha - \beta = \frac{\pi}{2}$, then find the locus of intersection of AP and BQ

(1) $x^2 + y^2 - 4y - 4 = 0$ (2) $x^2 + y^2 + 4y - 4 = 0$ (3) $x^2 + y^2 - 4y + 4 = 0$ (4) $x^2 + y^2 + 4y + 4 = 0$

Ans. [1]

Sol. Let point of intersection be (h, k)

$$\frac{k}{h+2} = \frac{2\sin\alpha}{2\cos\alpha+2} \Rightarrow \frac{k}{h+2} = \tan\frac{\alpha}{2}$$

$$\frac{k}{h-2} = \frac{2\sin\beta}{2\cos\beta-2} = \frac{\sin\beta}{\cos\beta-1} = -\cot\frac{\beta}{2}$$

$$\frac{\alpha}{2} - \frac{\beta}{2} = \frac{\pi}{4}$$

$$\tan\left(\frac{\alpha}{2} - \frac{\beta}{2}\right) = \tan\frac{\pi}{4} = 1$$

$$\frac{\tan\frac{\alpha}{2} - \tan\frac{\beta}{2}}{1 + \tan\frac{\alpha}{2}\tan\frac{\beta}{2}} = 1$$

$$\frac{\frac{k}{h+2} + \frac{h-2}{k}}{1 + \left(\frac{k}{h+2}\right)\left(\frac{2-h}{k}\right)} = 1 \Rightarrow \frac{\frac{k^2 + h^2 - 4}{k(h+2)}}{\frac{4}{h+2}} = 1$$

$$\frac{h^2 + k^2 - 4}{4k} = 1$$

$$x^2 + y^2 - 4y - 4 = 0$$

17. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3 + [x])}{3 + [\sin x] + [\cos x]} dx$ (where $[.]$ denotes greatest integer function):

(1) $11\pi + 2$ (2) $5\pi + 20$ (3) $11\pi - 20$ (4) $5\pi - 2$

Ans. [1]

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3 + [x])}{3 + [\sin x] + [\cos x]} dx$$

$$I = \int_{-\pi/2}^{-1} \frac{12(1)}{2} dx + \int_{-1}^0 \frac{12(2)}{2} dx + \int_0^1 \frac{12(3)}{2} dx + \int_1^{\pi/2} \frac{12(4)}{2} dx$$

$$I = 6\left(\frac{\pi}{2} - 1\right) + 12(0 + 1) + 12(1 - 0) + 16\left(\frac{\pi}{2} - 1\right)$$

$$I = 3\pi - 6 + 12 + 12 + 8\pi - 16$$

$$I = 11\pi + 2$$

18. If the arithmetic mean of $\frac{1}{a}$ & $\frac{1}{b}$ is $\frac{5}{16}$ and $a, 4, \alpha, b$ are in increasing A.P. then both the roots of equation $\alpha x^2 - ax + 2(\alpha - 2b)$ lie between

(1) $(-3, 0)$ (2) $(-2, 3)$ (3) $(0, 3)$ (4) $(-1, 1)$

Ans. [2]

Sol. $a = 4 - d, \alpha = 4 + d, b = 4 + 2d$

$$\Rightarrow (4+d)x^2 - (4-d)x + 2(4+d-8-4d) = 0$$

$$\Rightarrow (4+d)x^2 - (4-d)x + 2(-4-3d) = 0$$

$$\text{Also } \frac{\frac{1}{a} + \frac{1}{b}}{2} = \frac{5}{16}$$

$$\Rightarrow \frac{\frac{1}{4-d} + \frac{1}{4+2d}}{2} = \frac{5}{16}$$

$$\Rightarrow d = 2$$

Equation becomes

$$6x^2 - 2x - 20 = 0$$

$$3x^2 - x - 10 = 0$$

$$x = 2, \frac{-5}{3}$$

19. Let $f(x) = \lim_{\theta \rightarrow 0^+} \frac{\cos \pi x - x^{2/\theta} \sin(x-1)}{1 - x^{2/\theta}(x-1)}$

Statement 1: $f(x)$ is discontinuous at $x = 1$

Statement 2: $f(x)$ is continuous at $x = -1$

(1) Both Statements are correct

(2) Both Statements are false

(3) Statement 1 is false and Statement 2 is correct

(4) Statement 1 is correct and Statement 2 is false

Ans. [2]

Sol.
$$f(x) = \begin{cases} \cos \pi x & x \rightarrow 1^- \\ \frac{-\sin(x-1)}{-(x-1)} & x \rightarrow 1^+ \end{cases}$$

$$\text{RHL} = \lim_{x \rightarrow 1^+} \frac{\sin(x-1)}{(x-1)} = 1$$

$$\text{LHL} = \lim_{x \rightarrow 1^-} \cos \pi x = -1$$

$f(x)$ is discontinuous at $x = 1$

$$f(x) = \begin{cases} \frac{-\sin(x-1)}{-(x-1)} & x \rightarrow -1^- \\ \cos \pi x & x \rightarrow -1^+ \end{cases}$$

$$RHL = \lim_{x \rightarrow -1} \cos \pi x = -1$$

$$LHL = \lim_{x \rightarrow -1} \frac{-\sin(x-1)}{-(x-1)} = \frac{\sin 2}{2}$$

$f(x)$ is discontinuous at $x = -1$

20. **Statement 1 :** $25^{13} + 20^{13} + 8^{13} + 3^{13}$ is divisible by 7.

Statement 2 : The value of integral part of $(7 + 4\sqrt{3})^{25}$ is an odd number.

- (1) Both Statements are correct
- (2) Both Statements are false
- (3) Statement 1 is false and Statement 2 is correct
- (4) Statement 1 is correct and Statement 2 is false

Ans. [1]

Sol. **Statement I :**

$$\begin{array}{ccc} 25^{13} + 3^{13} & + & 20^{13} + 8^{13} \\ \downarrow & & \downarrow \\ \text{divisible by} & & \text{divisible by} \\ (25+3) & & (20+8) \\ \swarrow & & \searrow \\ \therefore \text{divisible by 7} \end{array}$$

Statement II : $R = (7 + 4\sqrt{3})^{25} = I + f$

$$R' = (7 - 4\sqrt{3})^{25} = f'$$

$$\therefore R + R' = 2 \left[{}^{25}C_0 7^{25} + {}^{25}C_2 7^{23} (4\sqrt{3})^2 + \dots \right]$$

$I + f + f' = \text{even integer}$

$\therefore I = \text{odd integer}$

$$\because 0 < f + f' < 2 \Rightarrow f + f' = 1$$

\Rightarrow Both the statements are correct

21. Given $f(x) = \int \frac{dx}{x^{2/3} + 2\sqrt{x}}$ & $f(0) = -26 + 24\ln 2$. If $f(1) = A + B\ln 3$, then find $(A + B)$

- (1) 10
- (2) 11
- (3) -11
- (4) -10

Ans. [3]

$$f(x) = \int \frac{dx}{x^{2/3} + 2x^{1/2}}$$

$$\text{Put } x = t^6 \Rightarrow dx = 6t^5 dt$$

$$= \int \frac{6t^5 dt}{t^4 + 2t^3} = 6 \int \frac{(t^2 - 4) + 4}{t + 2} dt$$

$$= 6 \left[\int (t-2) dt + 4 \int \frac{1}{t+2} dt \right]$$

$$= 6 \left[\frac{t^2}{2} - 2t + 4 \ln(t+2) \right] + C$$

$$= 3x^{1/3} - 12x^{1/6} + 24 \ln(x^{1/6} + 2) + C$$

$$f(0) = 24\ell n 2 + C = -26 + 24\ell n 2 \text{ (given)}$$

$$\Rightarrow C = -26$$

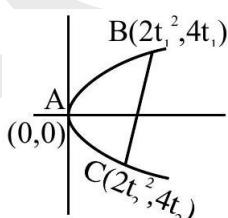
Now

$$f(1) = -35 + 24\ln 3 = A + B\ln 3 \text{ (as given in ques.)}$$

$$\Rightarrow A = -35 \text{ & } B = 24$$

$$\Rightarrow A + B = -11$$

22. If $\sum_{r=1}^{25} \frac{r}{r^4 + r^2 + 1} = \frac{p}{q}$, where p and q are coprime positive integers, then $p + q$ is equal to


Ans. [2]

$$\begin{aligned}
 \text{Sol. } S &= \sum \frac{r}{(r^2 + r + 1)(r^2 - r + 1)} \\
 &= \frac{1}{2} \sum_{r=1}^{25} \left(\frac{1}{r^2 - r + 1} - \frac{1}{r^2 + r + 1} \right) \\
 &= \frac{1}{2} \left[\left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{7} \right) + \dots + \left(\frac{1}{601} - \frac{1}{651} \right) \right] \\
 &= \frac{1}{2} \left[\frac{1}{1} - \frac{1}{651} \right] \\
 &= \frac{1}{2} \left[\frac{650}{651} \right] = \frac{325}{651} \\
 \frac{p}{q} &= \frac{325}{651} \Rightarrow p + q = 976
 \end{aligned}$$

Ans.

[3]

Sol.

Coordinates of centroid of triangle ABC are

$$x = \frac{2t_1^2 + 2t_2^2}{3} = \frac{7}{3}$$

$$t_1^2 + t_2^2 = \frac{7}{2}$$

$$y = \frac{4(t_1 + t_2)}{3} = \frac{4}{3}$$

$$t_1 + t_2 = 1$$

$$(t_1 + t_2)^2 - 2t_1 t_2 = \frac{7}{2}$$

$$t_1 t_2 = \frac{-5}{4}$$

$$(t_2 - t_1)^2 = 1 + 4 \times \frac{5}{4} = 6$$

$$(BC)^2 = (4(t_2 - t_1))^2 + (2(t_2^2 - t_1^2))^2$$

$$= 4(t_2 - t_1)^2 [4 + (t_2 + t_1)^2]$$

$$= 4 \times 5 \times 6 = 120$$

CAREER POINT