

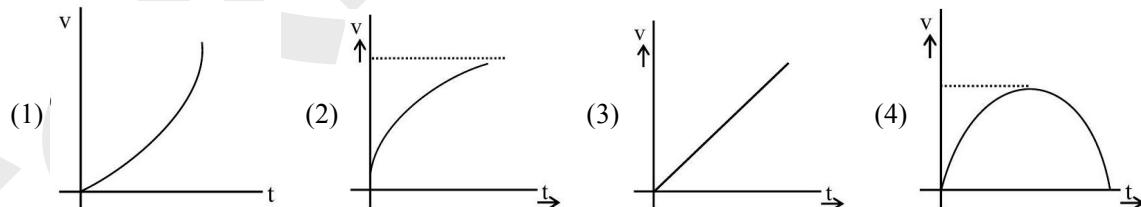
CAREER POINT
JEE Main Online Exam 2026
Memory Based
Questions & Solution
28th January 2026 | Morning

PHYSICS

1. Find work done in bringing charge $q = 3\text{nC}$ from infinity to point A as shown in the figure :

(1) $11 \times 10^{-7} \text{ J}$ (2) $36 \times 10^{-7} \text{ J}$ (3) $12 \times 10^{-7} \text{ J}$ (4) $13 \times 10^{-7} \text{ J}$

Ans. [2]


$$\text{Sol. } W = \frac{Kqq_B}{r_{AB}} + \frac{Kqq_C}{r_{AC}}$$

$$= \frac{9 \times 10^9 \times 3 \times 10^{-9}}{3 \times 10^{-2}} [1 + 3] \times 10^{-9}$$

$$W = 9 \times 4 \times 10^{-7}$$

$$W = 36 \times 10^{-7} \text{ J}$$

2. A particle is falling under gravity. Air resistance on particle is $F = -kv$. Find correct option :

Ans. [2]

$$\text{Sol. } a = g - \frac{kv}{m}$$

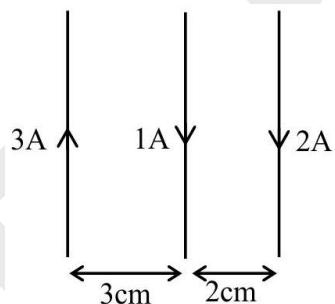
$$\frac{dv}{dt} = g - \frac{kv}{m} = \frac{gm - kv}{m}$$

$$\int_0^v \frac{dv}{gm - kv} = \int_0^t \frac{1}{m} dt$$

$$\left[-\frac{\ell n(gm - kv)}{k} \right]_0^v = \frac{1}{m} t$$

$$[-\ell n(gm - kv)]_0^v = \frac{k}{m} t$$

$$\ell n \left[\frac{gm}{gm - kv} \right] = \frac{k}{m} t$$


$$\ell n \left[\frac{gm - kv}{gm} \right] = \frac{-k}{m} t$$

$$\ell n \left[1 - \frac{kv}{gm} \right] = \frac{-k}{m} t$$

$$\frac{kv}{gm} = \left(1 - e^{-\frac{k}{m} t} \right)$$

$$v = \frac{gm}{k} \left(1 - e^{-\frac{k}{m} t} \right)$$

3. Three very long parallel wires carrying current as shown. Find the force acting at 15 cm length of middle wire :

(1) $1\mu\text{ N}$

(2) $6\mu\text{ N}$

(3) $7\mu\text{ N}$

(4) $5\mu\text{ N}$

Ans. [2]

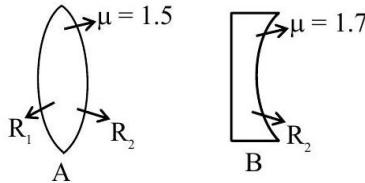
Sol. Force per unit length on middle wire :

$$F_{\text{net}} = \frac{\mu_0(1)(2)}{2\pi \times 2 \times 10^{-2}} + \frac{\mu_0(1)(3)}{2\pi \times 3 \times 10^{-2}}$$

$$= \frac{\mu_0}{2\pi \times 10^{-2}} (1+1)$$

$$= \frac{4\pi \times 10^{-7}}{2\pi \times 10^{-2}} \times 2$$

$$= 4 \times 10^{-5} \text{ N/m}$$


$$\text{For 15 cm length } F = 4 \times 10^{-5} \times 15 \times 10^{-2} \text{ N}$$

$$= 60 \times 10^{-7} \text{ N}$$

$$= 6 \times 10^{-6} \text{ N}$$

$$= 6\mu\text{ N}$$

4. Two lenses one biconvex and other plano concave have same magnitude of power. The refractive indices of their materials are 1.5 and 1.7 respectively. If the radii of curvature of the lenses are as shown. find the ratio: $\frac{R_1}{R_2}$:

(1) $\frac{5}{2}$

(2) $\frac{5}{3}$

(3) $\frac{5}{4}$

(4) $\frac{5}{5}$

Ans. [1]

Sol. $\frac{1}{f_A} = (\mu_A - 1) \left[\frac{1}{R_1} - \frac{1}{(-R_2)} \right]$

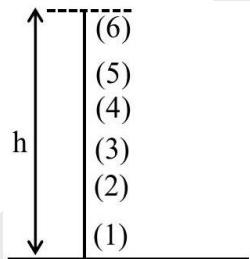
$$\frac{1}{f_B} = (\mu_B - 1) \left[\frac{1}{\infty} - \frac{1}{R_2} \right]$$

$$|P_A| = |P_B| \Rightarrow 0.5 \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{0.7}{R_2}$$

$$\Rightarrow \frac{0.5}{R_1} = \frac{0.2}{R_2} \Rightarrow \frac{R_1}{R_2} = \frac{5}{2}$$

5. Balls are dropped at regular intervals from height 5 m. If the first ball touches the ground when 6th ball is about to be dropped, find the height of 4th ball above the ground at the same instant :

(1) 4.1 m


(2) 4.2 m

(3) 4.3 m

(4) 4.4 m

Ans. [2]

Sol. time taken by 1st ball to touch ground.

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 5}{10}} = 1 \text{ s}$$

Let 1st ball is dropped at $t = 0$ then, 6th ball will be dropped at $t = 1 \text{ s}$

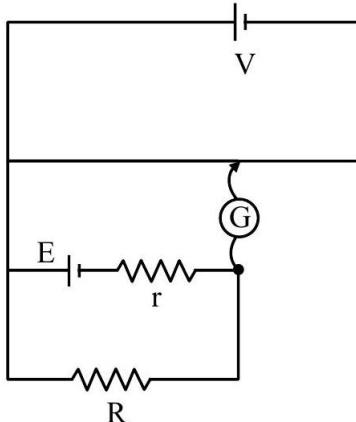
$$t = 0 \rightarrow 1^{\text{st}} \text{ ball}$$

$$t = 0.2 \rightarrow 2^{\text{nd}} \text{ ball}$$

$$t = 0.4 \rightarrow 3^{\text{rd}} \text{ ball}$$

$$t = 0.6 \rightarrow 4^{\text{th}} \text{ ball}$$

$$t = 0.8 \rightarrow 5^{\text{th}} \text{ ball}$$


$$t = 1 \rightarrow 6^{\text{th}} \text{ ball}$$

So, height dropped by 4th ball : $h = \frac{1}{2} g(0.4)^2$

$$= \frac{1}{2} \times 10 \times 0.16 = 0.8 \text{ m}$$

So, height above ground = $5 - 0.8 = 4.2 \text{ m}$

6. For the given circuit, if $R = 12\Omega$, balancing length is 180 cm. When value of R is 4Ω , then balancing length is 120 cm. Find internal resistance of cell E.

(1) 2Ω

(2) 5Ω

(3) 4Ω

(4) 1Ω

Ans. [3]

Sol. Let potential gradient of potentiometer wire be λ .

\therefore In 1st case

$$12i_1 = 180\lambda = E - i_1 r \Rightarrow E - 15\lambda r = 180\lambda \quad \dots (1)$$

In 2nd case

$$4i_2 = 120\lambda = E - i_2 r \Rightarrow E - 30\lambda r = 120\lambda \quad \dots (2)$$

From (1) and (2)

$$r = 4\Omega$$

7. An atom 8_3X is bombarded with electrons, neutrons and protons and in 10 sec, 10 electrons, 10 protons and 9 neutrons are absorbed. If final surface area is $x\%$ of initial area, find x :-

(1) 250%

(2) 350%

(3) 225%

(4) 900%

Ans. (3)

Sol. $R = R_0 A^{1/3}$

$$\therefore R_{\text{initial}} = R_0 8^{1/3} = 2R_0$$

$$R_{\text{final}} = R_0 27^{1/3} = 3R_0$$

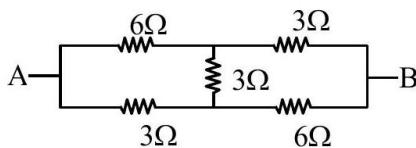
$$\text{Initial surface area} = 4\pi(2R_0)^2$$

$$\text{Final surface area} = 4\pi(3R_0)^2$$

$$\text{Final area} = 225\% \text{ of initial area.}$$

8. Find the ratio of de-Broglie wavelengths of deuteron having energy E and α -particle having energy 2E :

Ans. [2]


Sol.
$$\lambda = \frac{h}{\sqrt{2mKE}}$$

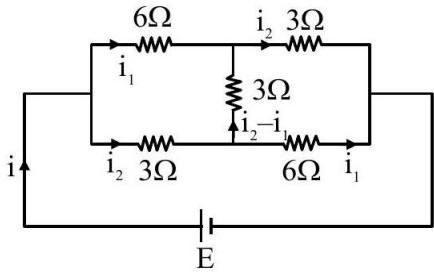
$$\frac{\lambda_D}{\lambda_\alpha} = \sqrt{\frac{m_\alpha}{m_D} \left(\frac{KE_\alpha}{KE_D} \right)}$$

$$= \sqrt{\left(\frac{4}{2}\right) \left(\frac{2E}{E}\right)}$$

$$\frac{\lambda_D}{\lambda_\alpha} = 2$$

9. If equivalent resistance between points A and B is $\frac{X}{5}$ (in Ω), then find value of X :

(1) 20


(2) 25

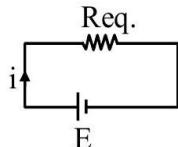
(3) 21

(4) 30

Ans. [3]

Sol.

$$-3i_2 - 6i_1 + E = 0 \quad \dots (1)$$


$$3(i_2 - i_1) - 6i_1 + 3i_2 = 0 \quad \dots (2)$$

$$6i_2 - 9i_1 = 0 \Rightarrow i_2 = \frac{3}{2}i_1$$

$$\text{From (1) } +3\left(\frac{3}{2}i_1\right) + 6i_1 = E$$

$$i_1 = \frac{2E}{21}, i_2 = E/7$$

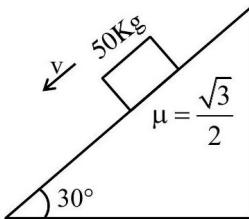
$$\frac{5E}{21} = i = i_1 + i_2$$

$$i = \frac{E}{\text{Req.}} \Rightarrow \text{Req.} = \frac{21}{5} = \frac{X}{5}$$

Value of X is 21.

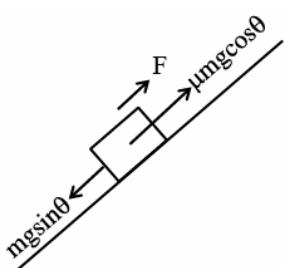
10. A circular coil of radius R carries current such that magnetic field at its centre is $16\mu\text{ T}$. Find the magnetic field on the axis at a distance of $\sqrt{3}R$ from the centre of coil.

(1) $2\mu\text{ T}$ (2) $4\mu\text{ T}$ (3) $3\mu\text{ T}$ (4) $5\mu\text{ T}$


Ans. [1]

Sol. Given, $\frac{\mu_0 I}{2R} = 16\mu\text{ T}$... (1)

Then, $\frac{\mu_0 I R^2}{2[R^2 + (\sqrt{3}R)^2]^{3/2}} = B$... (2)


Now, $\frac{B}{16} = \frac{R^2 / (2 \times 8R^3)}{1/2R} \Rightarrow B = 2\mu\text{ T}$

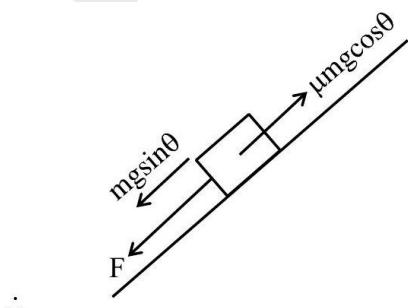
11. Find external force F so that block can move on inclined plane with constant velocity.

Ans. (1) 125 N (2) 120 N (3) 145 N (4) 115 N

Sol. [1]

$$mg \sin \theta = F + \mu mg \cos \theta$$

$$F = mg \sin \theta - \mu mg \cos \theta$$

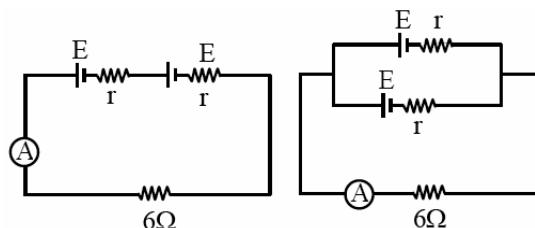

$$= 500 [\sin 30^\circ - \mu \cos 30^\circ]$$

$$= 500 \left[\frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right] = 500 \left[\frac{1}{2} - \frac{3}{4} \right]$$

$$F = 500 \left[-\frac{1}{4} \right]$$

$$F = -125\text{ N}$$

$$F = 125\text{ N}$$


12. A particle moves according to the equation $x = A \sin(\omega t)$. The potential energy is maximum at time $t = \frac{T}{2\beta}$, where T is the time period of particle. Find the minimum value of β :

Ans. [2]

Sol. For SHM starting from mean, PE is maximum after $T/4$ time.

$$\therefore 2\beta = 4 \Rightarrow \beta = 2$$

13. Figure shows two combinations of real cells with 6Ω internal resistance. If reading of ammeters are same in both cases, find the value of 'r'.

(1) 6Ω

(2) 5Ω

(3) 8Ω

(4) 12Ω

Ans. [1]

Sol. In 1st case, $i = \frac{2E}{6+2r}$

In 2nd case, $i = \frac{E}{6+\frac{r}{2}}$

$$\therefore \frac{2E}{6+2r} = \frac{E}{6+r/2}$$

$$\Rightarrow \frac{1}{3+r} = \frac{2}{12+r}$$

$$\Rightarrow 12+r = 6+2r$$

$$\Rightarrow r = 6\Omega$$

14. Focal length of a convex lens in air is $f = 18\text{ cm}$. It is immersed in a liquid of refractive index $4/3$. If change in focal length of lens is $\Delta f = nf$, Find n . [Given refractive index of lens is 1.5] :

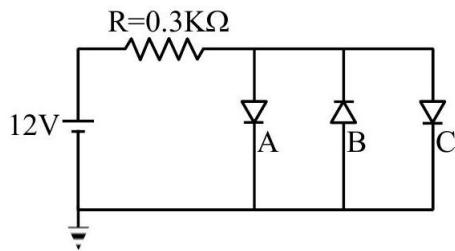
Ans. [3]

Sol. For lens in air,

$$\frac{1}{f} = \left(\frac{\mu_L}{1} - 1 \right) \left[\frac{1}{R_1} - \frac{1}{R_2} \right] = \frac{1}{18}$$

$$\therefore \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{18} \times 2 = \frac{1}{9}$$

In liquid,


$$\frac{1}{f'} = \left(\frac{\mu_L}{\mu_S} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \left(\frac{1.5 \times 3}{4} - 1 \right) \left(\frac{1}{9} \right) = \frac{1}{8} \times \frac{1}{9}$$

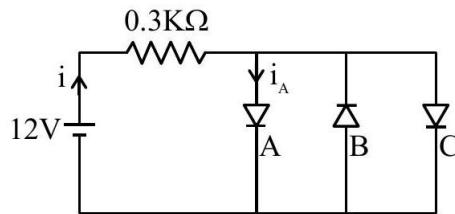
$$\therefore f' = 72\text{ cm}$$

$$\therefore \Delta f = (72 - 18)\text{ cm} = 54\text{ cm} = 3 \times 18\text{ cm}$$

$$\therefore n = 3$$

15. Three silicon diodes connected parallel to each other as shown. Forward voltage of diode is 0.7 V . Find current through diode A :

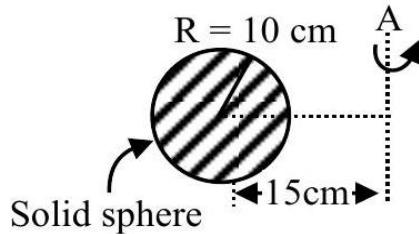
$$(1) \frac{113}{3} \text{ mA}$$


$$(2) \frac{113}{6} \text{ mA}$$

$$(3) \frac{113}{9} \text{ mA}$$

$$(4) \frac{226}{3} \text{ mA}$$

Ans. [2]


Sol.

$$i = \frac{12 - 0.7}{0.3 \times 10^3} \Rightarrow i = \frac{113}{3} \text{ mA}$$

$$i_A = \frac{i}{2} = \frac{113}{6} \text{ mA} \quad (\text{Option B is correct})$$

16. As shown in the figure, radius of gyration about the axis shown in $\sqrt{\text{cm}}$ for a solid sphere. Find ' n '.

Ans. [265]

$$\text{Sol. } I_A = I_{\text{cm}} + md^2$$

$$= \frac{2}{5}mR^2 + md^2$$

$$mk^2 = I_A = m \left[\frac{2}{5}(10)^2 + (15)^2 \right]$$

$$k^2 = \left[\frac{2}{5} \times 100 + 225 \right]$$

$$k^2 = [40 + 225]$$

$$k = \sqrt{265} \text{ cm}$$

$$n = 265$$

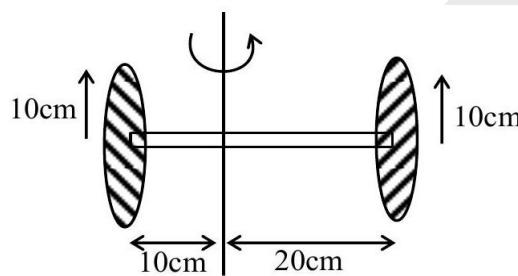
17. If nothing is kept between jaws, zero of Vernier scale lies right of 0 cm of main scale and 4th line of Vernier scale matches perfectly with any line of main scale. An object is kept between jaws and zero of Vernier scale crosses 15th division of main scale and 5th division of Vernier scale exactly matches with any line of main scale. (Least count = 0.1 mm and 1MSD = 1 mm). Find dimension of object :

(1) 15.1 mm (2) 15.5 mm (3) 15.4 mm (4) 15.9 mm

Ans. [1]

Sol. Reading = MSR + VSR × LC - Zero error

$$= 15 \text{ mm} + 5 \times 0.1 \text{ mm} - 4 \times 0.1 \text{ mm}$$


$$= 15 \text{ mm} + 0.5 \text{ mm} - 0.4 \text{ mm}$$

$$\text{Reading} = 15.1 \text{ mm}$$

$$\text{Dimension} = 15.1 \text{ mm}$$

Note : Vernier scale has positive zero error.

18. In the system of two discs and a rod of mass 600 g each, a torque of magnitude 43×10^5 dyne-cm is applied along the axis of rotation as shown in figure. Find the approx angular acceleration about given axis

(1) 11 rad/s^2

(2) 100 rad/s^2

(3) 27 rad/s^2

(4) 22 rad/s^2

Ans. [1]

Sol. $\tau = I_{\text{sys}} \alpha$

$$\tau = (I_{\text{disc1}} + I_{\text{disc2}} + I_{\text{rod}})\alpha$$

$$\tau = \left(\left(\frac{MR^2}{4} + Md_1^2 \right) + \left(\frac{MR^2}{4} + Md_2^2 \right) + \left(\frac{MR^2}{12} + Md_3^2 \right) \right) \alpha$$

$$43 \times 10^5 \times 10^{-7} = \left(\left(\frac{(0.6)(0.1)^2}{4} + (0.6)(0.1)^2 \right) + \left(\frac{0.6(0.1)^2}{4} + 0.6(0.2)^2 \right) + \left(\frac{(0.6)(0.3)^2}{12} + (0.6)(0.05)^2 \right) \right) \alpha$$

$$43 \times 10^{-2} = ((0.0015 + 0.006) + 0.0015 + 0.024) + (0.0045 + 0.0015) \alpha$$

$$43 \times 10^{-2} = (0.039) \alpha$$

$$\alpha = 11.025 \text{ rad/s}^2$$

19. **Statement-1 :** Planner wavefronts are incident on a prism, remain planner after passing through prism, but if planner wavefronts are passed through a pin hole then wavefronts may become spherical.

Statement-2 : If slit width is increased then curvature of wave front increases.

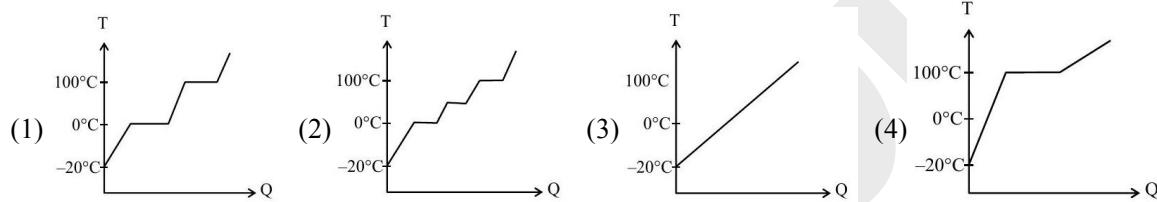
(1) Statement-1 is correct, statement-2 is incorrect.

(2) Statement-1 is incorrect, statement-2 is correct.

(3) Both statement are correct.

(4) Both statement are incorrect.

Ans. [3]


Sol. On increasing width size radius of curvature of wavefront increases and for very large slits it is almost plane.

20. An electromagnetic wave travelling in a medium has its electric field given by :
 $E = 2\sin(2 \times 10^{15}t - 10^7x)$. Find the refractive index of the medium :
 (1) 1.1 (2) 1.7 (3) 1.3 (4) 1.5

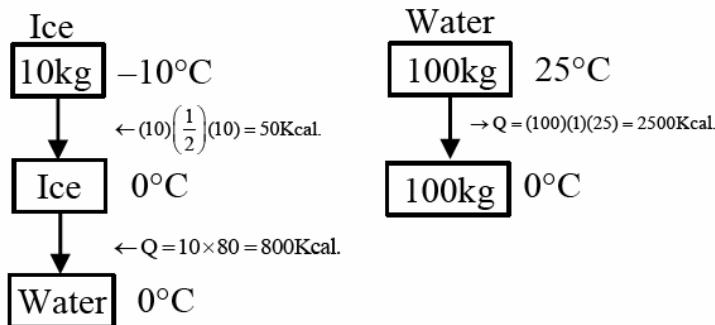
Ans. [4]

Sol. Speed of EM wave : $v = \frac{\omega}{k} = \frac{2 \times 10^{15}}{10^7}$
 $= 2 \times 10^8$
 $\therefore \mu = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^8} = 1.5$

21. Ice is heated from -20°C to 200°C . Which of the following temperature (T) vs heat (Q) graph is correct?

Ans. [1]

Sol. Theoretical


22. Electric current in a circuit is given by $i = i_0 \frac{t}{T}$, then find the rms current for period $t = 0$ to $t = T$:
 (1) $\frac{i_0}{\sqrt{3}}$ (2) $\frac{i_0}{\sqrt{2}}$ (3) $\frac{i_0}{\sqrt{5}}$ (4) $\frac{i_0}{\sqrt{4}}$

Ans. [1]

Sol. $i_{\text{rms}} = \sqrt{\frac{1}{T} \int_0^T [i(t)]^2 dt}$
 $i_{\text{rms}} = i_0 \sqrt{\frac{1}{T} \int_0^T \left(\frac{t}{T}\right)^2 dt}$
 $i_{\text{rms}} = i_0 \sqrt{\frac{1}{T^3} \left[\frac{t^3}{3} \right]_0^T}$
 $i_{\text{rms}} = \frac{i_0}{\sqrt{3}}$

23. 10 kg ice at -10°C & 100 kg water at 25°C are mixed together. Find final temperature. (Given
 $S_{\text{ice}} = \frac{1}{2} \text{cal/g}^{\circ}\text{C}$, $L_{\text{fusion}} = 80 \text{cal/g}$ and $S_{\text{water}} = 1 \text{cal/g}^{\circ}\text{C}$)
 (1) 15°C (2) 10°C (3) 25°C (4) 20°C

Ans. [1]

Sol.

Whole ice will melt. Let final temperature is T. Net heat conserved.

$$\therefore m_i S_i (0 - (-10)) + m_i L_f + m_i S_w (T - 0) + m_w S_w (T - 25) = 0$$

$$10\left(\frac{1}{2}\right)(10) + 10 \times 80 + 10(1)(T - 0) + 100(1)(T - 25) = 0$$

$$50 + 800 + 10T + 100T - 2500 = 0$$

$$110T = 25W - 800 - 50$$

$$110T = 1650$$

$$T = \frac{165}{11} = 15^\circ\text{C}$$

Final temperature $T = 15^\circ\text{C}$

24. For a gas $P - V$ curve is given as shown in the diagram. Curve path follows equations $(V - 2)^2 = 4aP$. Find work done by gas in given cyclic process.

$$(1) -\frac{1}{3a}$$

$$(2) \frac{1}{3a}$$

$$(3) \frac{1}{5a}$$

$$(4) \frac{1}{2a}$$

Ans. [1]
Sol. Work done = Area of parabola

$$= \frac{2}{3} \text{ Area of rectangle ABCD}$$

$$= \frac{2}{3} P_0 (3 - 1)$$

$$= \frac{4P_0}{3}$$

$$V = 1 \Rightarrow (1-2)^2 = 4aP_0$$

$$P_0 = \frac{1}{4a}$$

$$= \frac{4}{3} \times \frac{1}{4a}$$

$$\text{Work done by gas} = \frac{-1}{3a}$$

25. Two wires of cross sectional area 1 cm^2 and 2 cm^2 and lengths 20 cm and 30 cm are connected to the same load. If their extensions are same, find the ratio of their Young's modulus :

(1) $\frac{4}{2}$

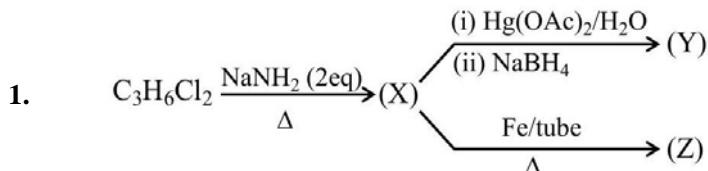
(2) $\frac{4}{3}$

(3) $\frac{1}{2}$

(4) $\frac{3}{2}$

Ans. [2]

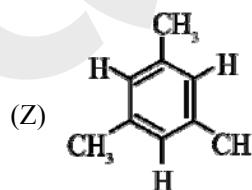
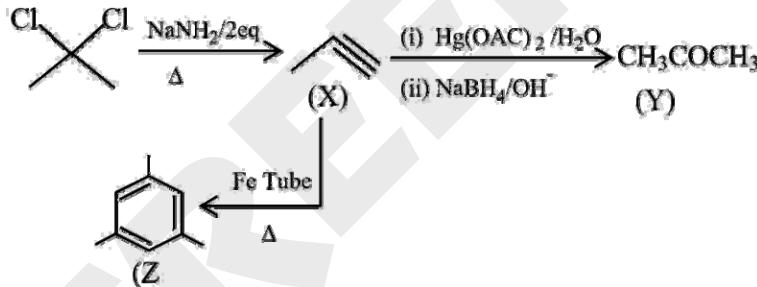
Sol. $\Delta\ell_1 = \Delta\ell_2$

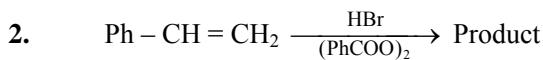

$$\Rightarrow \frac{F\ell_1}{A_1 Y_1} = \frac{F\ell_2}{A_2 Y_2}$$

$$\frac{Y_1}{Y_2} = \frac{A_2}{A_1} \times \frac{\ell_1}{\ell_2} = \frac{4}{3}$$

CAREER POINT
JEE Main Online Exam 2026
Memory Based
Questions & Solution
28th January 2026 | Morning

CHEMISTRY



Statement-I : Y gives yellow ppt. with NaOH/I_2 .


Statement-II : Two types of H-atoms and one aromatic ring is present in Z and ratio of Z and X is 1:3.

- (1) Statement-I is correct and Statement-II is incorrect.
- (2) Statement-I is incorrect and Statement-II is correct.
- (3) Both Statements are correct.
- (4) Both Statements are incorrect.

Ans. [3]

Sol.

Correct statement(s) regarding product :

(a) is minor product
(b) Benzene is also form a bi product
(c) Reaction follow free radical mechanism
(d) In absence of peroxide carbocation mechanism is followed

(1) b, c (2) a, c, d (3) c, d (4) a, b, c

Ans. [3]

Sol. It is a free addition reaction which follows Anti Markovnikov's rule.

3. Determine the values of X, Y and Z for the following complexes and calculate the sum $X + Y + Z$.

$$X = \text{number of geometrical isomers of } [\text{Pt}(\text{NH}_3)(\text{Cl})(\text{Br})(\text{Py})]$$

$$Y = \text{Number of optically inactive isomers of } [\text{Cr}(\text{en})_2\text{Cl}_2]^{+1}$$

$$Z = \text{Number of stereoisomers of } [\text{Co}(\text{NH}_3)_3(\text{NO}_3)_3]$$

Ans. [6]

Sol. Here

$X = 3$ (Two cis + one trans isomers)

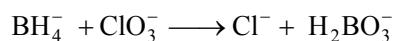
$Y = 1$ (trans isomer)

$Z = 2$ (Fac- mer isomer)

$$X + Y + Z = 3 + 1 + 2 = 6$$

4. **Statement-I :** Among BF_4^- , SiF_4 , SF_4 , and XeF_4 , the bond lengths are not identical in two of these molecules.

Statement-II : Among O_2^+ , O_2^- , O_2^{2-} and F_2 the highest bond order is found in O_2^- .


(1) Statement I is true and statement II is false.
(2) Statement I is false and statement II is true.
(3) Both statement are true.
(4) Both statement are false.

Ans. [4]

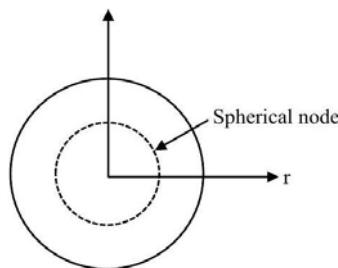
Sol. In BF_4^- , SiF_4 and XeF_4 all bond lengths are identical

Molecules	B.O.
O_2^+ \rightarrow	25.
O_2^- \rightarrow	1.5
O_2^{2-} \rightarrow	1
F_2 \rightarrow	1

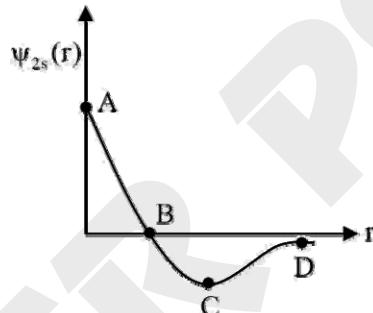
5. For the given cell reaction

Cell emf 'E' is given as

$$E = E^0 - \frac{RT}{nF} \ln(Q)$$


Determine the value of 'n' in above equation

Ans. [24]



n-factor = 8

moles = 3

$$\therefore n = 3 \times 8 = 24$$

6.

Figure-1

Spherical node shown in figure-1 is best represented by which point in figure-2.

Figure-2

(1) A

(2) B

(3) C

(4) D

Ans. [2]
Sol. At spherical node

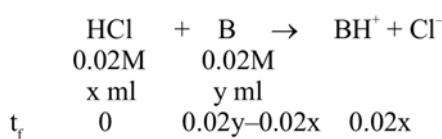
$$\psi_r = 0$$

7. There is a weak base 'B' having $\text{pK}_b = 5.691$ of molarity 0.02 M. When 0.02 M HCl solution has been added, then pH of resultant buffer solution has been found to be 9. Take total volume of resultant buffer solution to be 100 ml. Find the value of 'x' & 'y', where 'x' is volume of HCl solution in ml & 'y' is volume of 'B' solution in ml. Given $\log(5) = 0.691$

(1)

x	y
14.29	85.71

(2)


x	y
15	85

(3)

x	y
20	80

(4)

x	y
40	60

Ans. [1]
Sol.

$$P^{OH} = P^{k_b} + \log \left[\frac{\text{Salt}}{\text{Base}} \right]$$

$$5 = 5.691 + \log \left[\frac{\text{Salt}}{\text{Base}} \right]$$

$$\frac{x}{y-x} = \frac{1}{5}$$

$$6x = y$$

$$7x = 100$$

$$x = \frac{100}{7} \text{ ml}$$

$$\& y = \frac{600}{7} \text{ ml}$$

8. The wave number of three spectral line of H-atom are given. The correct set of spectral lines belonging to Balmer series?

(1) $\frac{5R}{36}, \frac{3R}{16}, \frac{21R}{100}$

(2) $\frac{3R}{4}, \frac{3R}{16}, \frac{7R}{144}$

(3) $\frac{7R}{144}, \frac{3R}{16}, \frac{16R}{255}$

(4) $\frac{5R}{36}, \frac{3R}{16}, \frac{21R}{24}$

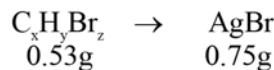
Ans. [1]

Sol. Balmer series line $\Rightarrow \bar{v} = R_H Z^2 \left[\frac{1}{2^2} - \frac{1}{n^2} \right]$

$$\text{if } n = 3 \Rightarrow \bar{v} = R(1)^2 \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}$$

$$\text{if } n = 4 \Rightarrow \bar{v} = \frac{3R}{16}$$

$$\text{if } n = 5 \Rightarrow \bar{v} = \frac{21R}{100}$$


9. 1 gm of organic compound gave 1.32 g CO₂, 0.53 g of same compound gave 0.75 g AgBr. If molecular formula of compound is C_xH_yBr_z then calculate percentage of hydrogen in the given compound.

Ans. [4]

Sol.

$$\% \text{C} = \frac{1.32 \times 12}{44 \times 1} \times 100 = 36\%$$

$$\% \text{Br} = \frac{0.75 \times 80}{188 \times 0.53} \times 100 = 60.2\%$$

$$\% \text{H} = 100 - (36 + 60.2)$$

$$\% \text{H} \simeq 4\%$$

10. 2 moles of liquid A and 3 moles of liquid B are mixed to form an ideal solution. The vapour pressure of ideal solution is 320 mm Hg. When 1 mole of A & 1 mole of B is further added then new vapour pressure of solution is 328.57 mm Hg. Find the vapour pressure of pure A (P_A°) & pure B (P_B°):

(1) $P_A^\circ = 200 \text{ mmHg}, P_B^\circ = 500 \text{ mmHg}$

(2) $P_A^\circ = 500 \text{ mmHg}, P_B^\circ = 200 \text{ mmHg}$

(3) $P_A^\circ = 300 \text{ mmHg}, P_B^\circ = 400 \text{ mmHg}$

(4) $P_A^\circ = 200 \text{ mmHg}, P_B^\circ = 300 \text{ mmHg}$

Ans. [2]

Sol.

$$\begin{array}{c} 2 \text{ moles of A} + 3 \text{ moles of B} \\ \downarrow \\ X_A = 2/5, X_B = 3/5 \end{array}$$

$$P_S = X_A P_A^\circ + X_B P_B^\circ$$

$$320 = P_A^\circ \left(\frac{2}{5} \right) + P_B^\circ \left(\frac{3}{5} \right)$$

$$2P_A^\circ + 3P_B^\circ = 1600$$

... (I)

Now 1 mole of A & 1 mole of B is added

$$X'_A = \frac{3}{7}, X'_B = \frac{4}{7}$$

$$P'_S = 328.57 = P_A^\circ \left(\frac{3}{7} \right) + P_B^\circ \left(\frac{4}{7} \right)$$

$$3P_A^\circ + 4P_B^\circ = 2300$$

... (II)

Now eq (I) $\times 3 -$ eq (II) $\times 2$

$$6P_A^\circ + 9P_B^\circ = 4800$$

$$6P_A^\circ + 8P_B^\circ = 4600$$

$$P_B^\circ = 200 \text{ mm of Hg}$$

$$P_A^\circ = 500 \text{ mm of Hg}$$

11. 500 ml, 1.2M KI is completely react with 0.2 M, 500 ml KMnO_4 solution in basic medium. I^- is oxidised to I_2 . The liberated I_2 react with 0.1 M $\text{Na}_2\text{S}_2\text{O}_3$ solution. Then find volume (in L) of $\text{Na}_2\text{S}_2\text{O}_3$ solution required to completely react with liberated I_2 .

Ans. [3]

Sol. gram eq of KMnO_4 = gram eq of $\text{Na}_2\text{S}_2\text{O}_3$

$$0.2 \times \frac{500}{1000} \times 3 = 0.1 \times V \times 1$$

$$V = 3 \text{ L}$$

12. In 4th period of periodic table the elements with the largest and smallest size respectively is :

(1) K and Br (2) Na and Cl (3) K and Se (4) Rb and Br

Ans. [1]

Sol. In a period moving from left to right atomic size decreases.

13. Select correct option :

- (1) $[\text{Ni}(\text{CN})_4]^{2-}$ and $[\text{Ni}(\text{CO})_4]$ both are diamagnetic while $[\text{NiCl}_4]^{2-}$ is paramagnetic
- (2) $[\text{Ni}(\text{CN})_4]^{2-}$ and $[\text{NiCl}_4]^{2-}$ both are diamagnetic while $[\text{Ni}(\text{CO})_4]$ is paramagnetic
- (3) $[\text{NiCl}_4]^{2-}$ and $[\text{Ni}(\text{CO})_4]$ both are diamagnetic while $[\text{Ni}(\text{CN})_4]^{2-}$ is paramagnetic
- (4) Only $[\text{Ni}(\text{CN})_4]^{2-}$ is diamagnetic while both $[\text{NiCl}_4]^{2-}$ and $[\text{Ni}(\text{CO})_4]$ are paramagnetic

Ans. [1]

Sol. $[\text{Ni}(\text{CN})_4]^{2-} \rightarrow 3 \text{d}^8 \rightarrow \text{diamagnetic} \rightarrow \text{dsp}^2$

$[\text{Ni}(\text{CO})_4] \rightarrow 3 \text{d}^{10} \rightarrow \text{diamagnetic} \rightarrow \text{sp}^3$

$[\text{NiCl}_4]^{2-} \rightarrow 3 \text{d}^8 \rightarrow \text{e}^{2,2} \text{t}_2^{2,1,1} \rightarrow \text{sp}^3 \rightarrow \text{paramagnetic.}$

14. **Statement-I** : Consider the following pairs of ions $(\text{Sc}^{3+}, \text{Ti}^{3+}), (\text{Ti}^{4+}, \text{Ni}^{2+}) (\text{Cu}^{2+}, \text{Zn}^{2+})$ and $(\text{Cr}^{3+}, \text{Mn}^{3+})$. Out of these pairs three pairs consist of ions that are both coloured :

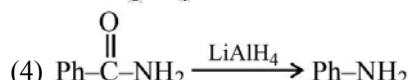
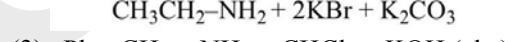
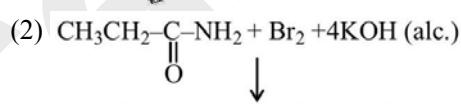
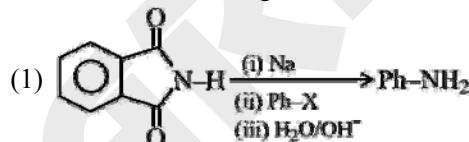
Statement-II : Among the lanthanide ions Eu^{2+} , Gd^{3+} , Ce^{4+} and Tb^{4+} , the ion Tb^{4+} is the strongest reducing agent.

(1) Both statements are true	(2) Both statements are false
(3) Statement-I is true and statement-II is false	(4) Statement-I is false and statement-II is true.

Ans. [2]

Sol. $\text{Sc}^{3+}, \text{Ti}^{4+}$ and Zn^{2+} are colourless

Tb^{4+} cannot act as a reducing agent.





15. In carius method of estimation of ' Br ' 1.53 gm of an organic compound gave 1 gm AgBr. The % of Br in organic compound is (At. mass of Ag and Br are 108 and 80 amu respectively)

(1) 35.23	(2) 43.53	(3) 27.81	(4) 22.71
-----------	-----------	-----------	-----------

Ans. [3]

$$\text{Sol. \% Br} = \frac{\left(\frac{1 \text{ gm}}{188}\right) \times 80}{1.53} \times 100 = 27.81\%$$

16. Which of the following reaction is correctly matched with their product?

Ans. [3]

Sol.
$$t = \frac{1}{k} \ln \frac{A_0}{A_t}$$

$$t_{1/8} = \frac{1}{k} \ln \frac{A_0}{A_0/8} = \frac{1}{k} \ln 8$$

$$t_{1/10} = \frac{1}{k} \ln \frac{A_0}{A_0/10} = \frac{1}{k} \ln 10$$

$$\frac{t_{1/8}}{t_{1/10}} = \frac{\ln 8}{\ln 10} = \frac{\log 8}{\log 10}$$

$$\frac{t_{1/8}}{t_{1/10}} = \log 8 = 3 \log 2 = 0.9$$

$$\frac{t_{1/8}}{t_{1/10}} \times 10 = 9$$

21. For an ideal gas undergo isothermal reversible process from 0.5 Mpa, 20 dm³ to 0.2 Mpa at 600 K. Calculate correct option. [Given log5 = 0.6989, log2 = 0.3010]

- (1) w = -3.9 kJ, ΔU = 0, q = 3.9 kJ
- (2) w = -9.1 kJ, ΔU = 0, q = 9.1 kJ
- (3) w = +9.1 kJ, ΔU = 0, q = -9.1 kJ
- (4) w = +3.9 kJ, ΔU = 0, q = -3.9 kJ

Ans. [2]**Sol.** For isothermal reversible process = ΔU = 0

$$w_{\text{iso}} = -p_1 v_1 \ln \frac{P_1}{P_2}$$

$$w_{\text{iso}} = -0.5 \times 10^6 \times 20 \times 10^{-3} \ln \frac{0.5}{0.2}$$

$$w = -9.1 \text{ kJ}$$

$$q = -w = 9.1 \text{ kJ}$$

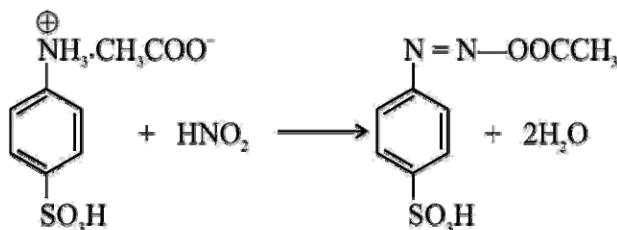
22. Choose the correct statements in respect of hydrides of group 15.

- (A) Reducing power increases down the group
- (B) Basic nature increases down the group
- (C) Stability decreases down the group
- (D) Boiling point decreases regularly down the group.

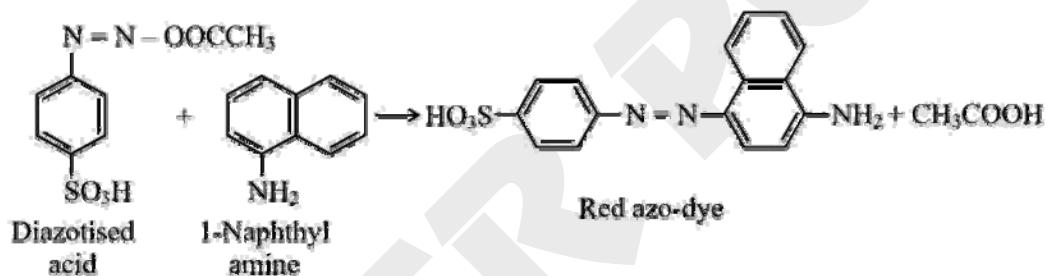
(1) A, B and C only	(2) A, B and D only
(3) A and C only	(4) B, C and D only

Ans. [3]**Sol.** Boiling point order $\text{PH}_3 < \text{AsH}_3 < \text{NH}_3 < \text{SbH}_3 < \text{BiH}_3$ So D is wrong

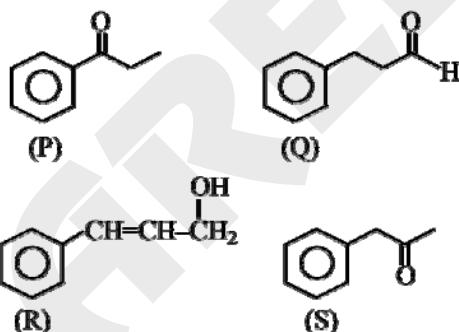
Basic nature $\text{NH}_3 > \text{PH}_3 > \text{AsH}_3 > \text{SbH}_3 > \text{BiH}_3$ So B is wrong.


23. **Statement-I :** Test for nitrite; sulphanilic acid and 1-naphthylamine are used.

Statement-II : Acidified nitrite is diazotized with sulphanilic acid and coupled with 1-naphthylamine.

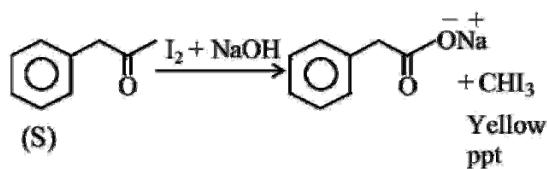

Select the correct statement.

- (1) Both Statements are correct.
- (2) Both Statements are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.


Ans. [1]

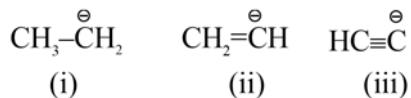
(Sulphanilic acid solution)

24.



Select the correct statement.

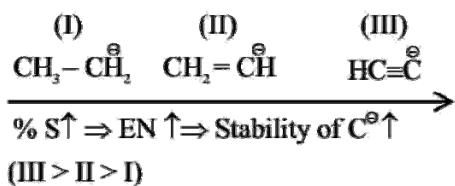
- (1) Compound P, Q, R give +ve 2,4-DNP test
- (2) Only compound S give yellow ppt with $\text{NaOH} + \text{I}_2$
- (3) Compound Q and R gives Tollen's test
- (4) Only compound P & S gives sooty flame


Ans. [2]

Sol.

Others compounds P, Q, R do not give Iodoform test.

25. Consider the following anions



Correct stability order of given anions is

(1) III > II > I (2) II > III > I (3) I > II > III (4) I > III > II

Ans.

Sol.

Put $x = 13$

$$12f^2(13) + 8f(13) - 12 = 3(13)^2 - 32(13) + 72$$

$$12f^2(13) + 8f(13) - 175 = 0$$

$$f(13) = \frac{-8 \pm 92}{24} \Rightarrow f(13) = \frac{7}{2} \text{ or}$$

$$f(13) = -\frac{15}{4} \text{ (rejected)}$$

3. Value of: $\sum_{k=1}^{\infty} \frac{(-1)^k \cdot k(k+1)}{k!}$

(1) $-\frac{1}{e}$

(2) $-\frac{2}{e}$

(3) $-\frac{3}{e}$

(4) $-\frac{4}{e}$

Ans. [1]

Sol. $\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} (k(k-1) + 2k)$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{(k-2)!} + 2 \sum_{k=1}^{\infty} \frac{(-1)^k}{(k-1)!}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-2}}{(k-2)!} - 2 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k-1)!}$$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} - 2 \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = - \sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$$

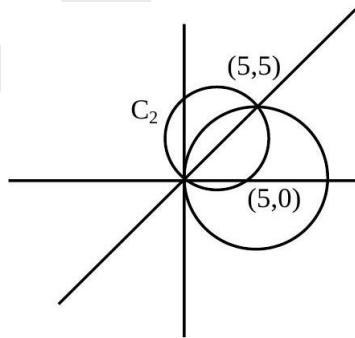
$$= - \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \dots \right)$$

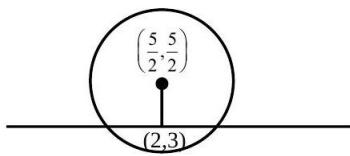
$$= -\frac{1}{e}$$

4. Consider a circle C_1 , passing through origin and lying in region $0 \leq x$ only, with diameter = 10. Consider a chord PQ of C_1 with equation $y = x$ and another Circle C_2 which has PQ as diameter. A chord is drawn to C_2 passing through (2,3) such that distance of chord from centre of C_2 is maximum has equation $x + ay + b = 0$ then $|b - a|$ is equal to :

(1) 1

(2) 2


(3) 3


(4) 4

Ans. [2]

Sol. Equation of C_2 is $x(x-5) + y(y-5) = 0$

$$x^2 + y^2 - 5x - 5y = 0$$

equation of chord is

$$T = S_1$$

Slope of chord is 1

Equation of line

$$y - 3 = 1(x - 2)$$

$$x - y = -1$$

$$\Rightarrow \begin{cases} x - y + 1 = 0 \\ x + ay + b = 0 \end{cases} \quad \left| \begin{array}{l} b = 1, a = -1 \\ |b - a| = 2 \end{array} \right.$$

5. Let $\int \frac{1 - 5\cos^2 x}{\sin^5 x \cos^2 x} dx = f(x) + c$ then find $f\left(\frac{\pi}{4}\right) - f\left(\frac{\pi}{6}\right)$:

$$(1) 4\sqrt{2} - \frac{32}{\sqrt{3}}$$

$$(2) 4\sqrt{3} - \frac{32}{\sqrt{3}}$$

$$(3) 4\sqrt{3} - \frac{32}{\sqrt{2}}$$

$$(4) 4\sqrt{2} - \frac{32}{\sqrt{2}}$$

Ans. [1]

$$\text{Sol. } \int \frac{dx}{\sin^5 \cos^2 x} - 5 \int \frac{dx}{\sin^5 x}$$

$$\int \frac{\sec^2 x dx}{\sin^5 x} - 5 \int \frac{dx}{\sin^5 x}$$

IBP

$$= \frac{\tan x}{\sin^5 x} - \int -\frac{5}{\sin^6 x} \cdot \cos x \cdot \tan x dx - 5 \int \frac{dx}{\sin^5 x}$$

$$= \frac{\tan x}{\sin^5 x} + c$$

$$f(x) = \frac{\tan x}{\sin^5 x}$$

$$f\left(\frac{\pi}{4}\right) - f\left(\frac{\pi}{6}\right) = (\sqrt{2})^5 - \frac{2^2}{\sqrt{3}} = 4\sqrt{2} - \frac{32}{\sqrt{3}}$$

6. A bag contains 'k' red balls and $(10 - k)$ black balls. If 3 balls are drawn at random and they are found to be black then the probability that bag has 9 black balls & 1 red ball is

$$(1) \frac{7}{11}$$

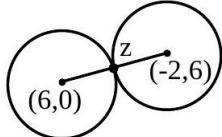
$$(2) \frac{14}{55}$$

$$(3) \frac{21}{55}$$

$$(4) \frac{6}{11}$$

Ans. [2]

$$\text{Sol. Probability} = \frac{{}^1C_0 \cdot {}^9C_3}{\sum_{k=0}^{10} {}^kC_0 \cdot {}^{10-k}C_3}$$


$$= \frac{{}^9C_3}{{}^{10}C_3 + {}^9C_3 + {}^8C_3 + \dots + {}^3C_3}$$

$$= \frac{{}^9C_3}{{}^{11}C_4} = \frac{14}{55}$$

7. A complex number 'z' satisfy both $|z-6|=5$ & $|z+2-6i|=5$ simultaneously. Find the value of $z^3 + 3z^2 - 15z + 141$.

Ans. [53]

Sol. $|z-6|=5$ & $|z+2-6i|=5$

Locus of z is circle both equation

$$z = 2 + 3i$$

$$z - 2 = 3i$$

$$\Rightarrow z^2 - 4z + 4 = -9$$

$$z^2 - 4z + 13 = 0$$

$$z^3 + 3z^2 - 15z + 141 = (z^2 - 4z + 13)(z + 7) + 53$$

$$= 53$$

8. The value of $\lim_{x \rightarrow 0} \frac{\ln(\sec(ex) \cdot \sec(e^2x) \cdot \dots \cdot \sec(e^{10}x))}{e^2 - e^{2\cos x}}$ is :

(1) $\frac{1}{2} \frac{(e^2 - 1)}{(e^{20} - 1)}$

(2) $\frac{1}{2} \frac{(e^{20} - 1)}{(e^2 - 1)}$

(3) $\frac{1}{2} \frac{(e - 1)}{(e^{20} - 1)}$

(4) None of these

Ans. [2]

Sol. $\Rightarrow \lim_{x \rightarrow 0} \frac{\ln(\sec(ex)) + \ln(\sec(e^2x)) + \dots + \ln(\sec(e^{10}x))}{e^{2\cos x} \left(\frac{e^{2-2\cos x} - 1}{2-2\cos x} \right) \times \frac{2-2\cos x}{x^2} \times x^2}$

$$\Rightarrow \lim_{x \rightarrow 0} \frac{\ln(\sec(ex)) + \ln(\sec(e^2x)) + \dots + \ln(\sec(e^{10}x))}{e^{2x^2}}$$

Using L'H rule

$$\Rightarrow \lim_{x \rightarrow 0} \frac{e \tan ex + e^2 \tan^2 x + \dots + e^{10} \tan^{10} x}{2e^2 x}$$

$$\Rightarrow \frac{1}{2e^2} \left[e^2 + e^4 + e^6 + \dots + e^{20} \right]$$

$$\Rightarrow \frac{1}{2} \frac{e^2 \left((e^2)^{10} - 1 \right)}{e^2 (e^2 - 1)}$$

$$\Rightarrow \frac{1}{2} \frac{(e^{20} - 1)}{(e^2 - 1)}$$

9. In ΔABC if $\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1$ where $A, B, C \in \left(0, \frac{\pi}{2}\right)$ then

(1) $\tan A, \tan B, \tan C$ are in A.P. (2) $\tan A, \tan C, \tan B$ are in A.P.
 (3) $\tan A, \tan B, \tan C$ are in G.P. (4) $\tan A, \tan C, \tan B$ are in G.P.

Ans. [4]

Sol.
$$\frac{\tan A - \tan B}{\tan A(1 + \tan A \tan B)} + \frac{1 + \cot^2 A}{1 + \cot^2 C} = 1$$

Let $\tan A = x$

$\tan B = y$

$\tan C = z$

$$\frac{x - y}{x(1 + xy)} + \frac{1 + \frac{1}{x^2}}{1 + \frac{1}{z^2}} = 1$$

$$\frac{(x - y)}{x(1 + xy)} + \frac{z^2(x^2 + 1)}{x^2(z^2 + 1)} = 1$$

$$x(x - y)(z^2 + 1) + z^2(x^2 + 1)(1 + xy) = x^2(1 + xy)(z^2 + 1)$$

After solving

$$z^2 = xy$$

$$\Rightarrow \tan^2 C = \tan A \tan B$$

10. Product of first 3 terms of a G.P. is 27 and sum is $R - \{a, b\}$, then $a^2 + b^2$ is equal to :
 (1) 90 (2) 81 (3) 9 (4) 18

Ans. [1]

Sol.
$$\frac{A}{r} \cdot A \cdot Ar = 27$$

$$A = 3$$

$$3\left(\frac{1}{r} + 1 + r\right) = 3 + 3\left(r + \frac{1}{r}\right)$$

$$\text{We know, } r + \frac{1}{r} \geq 2 \text{ or } r + \frac{1}{r} \leq -2$$

$$S \in R - (-3, 9)$$

$$a^2 + b^2 = 9 + 81 = 90$$

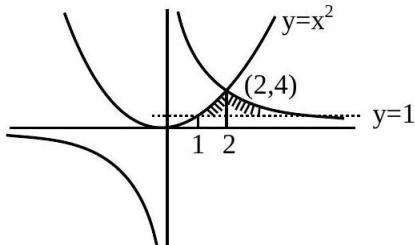
11. Consider the 10 observations 2, 3, 5, 10, 11, 13, 15, 21, a and b such that mean of observation is a and variance is 34.2. Then the mean deviation about median, is :
 (1) 5 (2) 6 (3) 7 (4) 8

Ans. [1]

Sol.
$$\frac{2 + 3 + 5 + 10 + 11 + 13 + 15 + 21 + a + b}{10} = 9$$

13. Area bounded by $\{(x, y) : xy \leq 8; y \leq x^2, y \geq 1\}$ is :

(1) $16\log_e 2 - \frac{14}{3}$


(2) $16\log_e 2 - \frac{13}{3}$

(3) $16\log_e 2 - \frac{17}{3}$

(4) $16\log_e 2 - \frac{19}{3}$

Ans. [1]

Sol.

$$A = \int_1^2 (x^2 - 1) dx + \int_2^8 \left(\frac{8}{x} - 1 \right) dx$$

$$A = 8\log_e 4 - \frac{14}{3} = 16\log_e 2 - \frac{14}{3}$$

14. Find possible no. of triplets (δ, c, d) , such that $x^2 + 2$ is divisor of $x^3 + bx^2 + cx + d$ & $\delta, c, d \leq 20$ & $\delta, c, d \in \mathbb{N}$:

Ans. [10]

$$x^3 + bx^2 + \left(x + d = (x^2 + 2) \left(x + \frac{d}{2} \right) \right)$$

$$x^2 : b = \frac{d}{2}$$

$$x : c = 2$$

$$c = 2, b = \frac{d}{2} \quad d \in \{2, 4, \dots, 20\}$$

No. of triplet = 10

15. Let x be the number of 9 digit numbers formed by taking digits from first 9 natural numbers, where only one digit is repeated twice & y be the number of 9 digit numbers formed from first 9 natural numbers, such that exactly 2 digits repeated twice then

(1) $x = 27y$

(2) $21x = 4y$

(3) $5x = 27y$

(4) $7x = 27y$

Ans. [2]

Sol. $S = \{1, 2, 3, \dots, 9\}$

$$x = {}^9C_1 \cdot {}^8C_7 \times \frac{9!}{2} = \frac{9 \times 8 \times 9!}{2}$$

$$y = {}^9C_2 \cdot {}^7C_5 \times \frac{9!}{2! \times 2!} = \frac{9 \times 8}{2} \times \frac{7 \times 6}{2} \times \frac{9!}{2! \times 2!}$$

$$\Rightarrow \frac{x}{y} = \frac{4}{21}$$

$$21x = 4y$$

16. Given conic $x^2 - y^2 \sec^2 \theta = 8$ whose eccentricity is ' e_1 ' & length of latus rectum ' ℓ_1 ' and for conic $x^2 + y^2 \sec^2 \theta = 6$, eccentricity is ' e_2 ' & length of latus rectum ' ℓ_2 '. If $e_1^2 = e_2^2 (1 + \sec^2 \theta)$ then value of

$$\frac{e_1 \ell_1}{e_2 \ell_2} \tan \theta$$

Ans. [2]

Sol. $\frac{x^2}{8} - \frac{y^2}{8 \cos^2 \theta} = 1, e_1 = \sqrt{1 + \frac{8 \cos^2 \theta}{8}}$

$$\ell_1 = \frac{2b^2}{a} = \frac{2 \cdot (8 \cos^2 \theta)}{2\sqrt{2}}$$

$$\frac{x^2}{6} + \frac{y^2}{6 \cos^2 \theta} = 1; e_2 = \sqrt{1 - \frac{6 \cos^2 \theta}{6}} = \sin \theta$$

$$\ell_2 = \frac{2b^2}{a} = \frac{2.6 \cos^2 \theta}{\sqrt{6}}$$

$$e_1^2 = e_2^2 (1 + \sin^2 \theta)$$

$$1 + \cos^2 \theta = \sin^2 \theta \left(1 + \frac{1}{\cos^2 \theta} \right)$$

$$1 + \cos^2 \theta = \sin^2 \theta + \tan^2 \theta$$

$$\text{Solving we get } \theta = \frac{\pi}{4}$$

$$\frac{e_1 \ell_1}{e_2 \ell_2} \tan \theta$$

= 2 by putting values.

17. If $f(x^2 + 1) = x^4 + 5x^2 + 1$, then find $\int_0^3 f(x) dx$:

(1) 13.5

(2) 15.3

(3) 13

(4) 15.5

Ans. [1]

Sol. $\because f(x^2 + 1) = x^4 + 5x^2 + 1$

$$\left\{ \text{put } x^2 + 1 = t \right\}$$

$$\Rightarrow f(t) = (t - 1)^2 + 5(t - 1) + 1$$

$$\Rightarrow f(t) = t^2 + 3t - 3$$

$$\text{Now, } \int_0^3 f(t) dt = \int_0^3 (t^2 + 3t - 3) dt$$

$$\left[\frac{t^3}{3} + \frac{3t^2}{2} - 3t \right]_0^3$$

$$\left[\frac{27}{3} + \frac{27}{2} - 9 \right]$$

$$= \frac{27}{2} = 13.5$$

Ans. [3]

$$\text{Sol.} \quad \sec^2 y \frac{dy}{dx} - \frac{2\tan y}{x} = x^3(2 - x^3)$$

$$\tan y = t \Rightarrow \sec^2 y \frac{dy}{dx} = \frac{dt}{dx}$$

$$\frac{dt}{dx} - \frac{2t}{x} = x^3 (2 - x^3)$$

$$\text{I. } F = e^{\int \frac{2}{x} dx} = e^{-2\ln x} = \frac{1}{x^2}$$

$$t\left(\frac{1}{x^2}\right) = \int (2 - x^3) dx$$

$$\frac{t}{x^2} = 2x - \frac{x^4}{4} + C$$

$$\frac{\tan y}{x^2} = 2x - \frac{x^4}{4} + C$$

$$y(2) = 0$$

$$\Rightarrow 0 = 4 - \frac{16}{4} + C \Rightarrow C = 0$$

Now put $x = 1$

$$\tan y = 2 - \frac{1}{4} = \frac{7}{4}$$

$$\tan y(1) = \frac{7}{4}$$

Ans.

Sol. $(\vec{a} - \vec{b})^2 + (\vec{b} - \vec{c})^2 + (\vec{c} - \vec{a})^2 = 9$

$$\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2}$$

$$\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow \vec{b} + \vec{c} = -\vec{a}$$

$$\left|2\vec{a} + k(\vec{b} + \vec{c})\right| = 3$$

$\rightarrow (s-1) \rightarrow s$

$$|\omega(-\omega)| = \omega$$

111

20. The value of $S = \sum_{r=1}^{20} \sqrt{\pi \int_0^r x |\sin \pi x| dx}$ is :

Ans. [1]

$$\text{Sol.} \quad I_r = \int_0^r x |\sin \pi x| dx$$

King

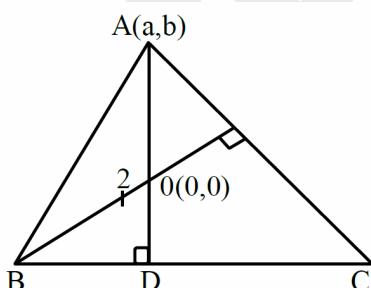
$$= \int_0^r (r-x) |\sin \pi x| dx$$

$$2I_r = \int_0^r r |\sin \pi x| dx \Rightarrow I_r = \frac{r}{2} \int_0^r |\sin \pi x| dx$$

$$I_1 = \frac{1}{2} \int_0^1 |\sin \pi x| dx = \frac{1}{2\pi} \int_0^\pi |\sin t| dx = \frac{1}{2\pi} \quad (2)$$

$$I_2 = \frac{2}{2} \int_0^2 |\sin \pi x| dx = \frac{2}{2\pi} \int_0^{2\pi} |\sin t| dt = \frac{2}{2\pi} (4)$$

$$S = \sqrt{\pi \frac{1}{2\pi} \cdot 2} + \sqrt{\pi \frac{2}{2\pi} \cdot 4} + \sqrt{\pi \frac{3}{2\pi} \cdot 6} + \dots + \sqrt{\pi \frac{20}{2\pi} (2.20)}$$


$$= 1 + 2 + 3 + \dots + 20$$

$$= \frac{20 \times 21}{2} = 210$$

21. Orthocentre of equilateral $\triangle ABC$ is at the origin. If side BC lies along $x + 2\sqrt{2}y = 4$. If coordinates of vertex A are (a, b) . Find the value of $\lceil a + \sqrt{2} b \rceil$, where $\lceil \cdot \rceil$ denotes G.I.F. :

Ans. [4]

Sol.

$$\therefore m_{BC} \cdot m_{AD} = -1$$

$$\Rightarrow \left(-\frac{1}{2\sqrt{2}} \right) \left(\frac{b}{a} \right) = -1$$

$$\Rightarrow b = 2\sqrt{2}a \quad \dots(1)$$

$$\because OD = \left| \frac{-4}{\sqrt{1+8}} \right| = \frac{4}{3} \Rightarrow AO = \frac{8}{3}$$

$$\text{So } AD = \frac{8}{3} + \frac{4}{3} = 4$$

$$\Rightarrow \frac{|a + 2\sqrt{2}b - 4|}{3} = 4 \Rightarrow a = \frac{16}{9} \text{ or } -\frac{8}{9}$$

$$\text{Now, } (a, b) = \left(\frac{16}{9}, \frac{32\sqrt{2}}{9} \right);$$

$\left. \begin{array}{l} \because A(a, b) \& (0, 0) \text{ lies same} \\ \text{side of given line} \end{array} \right\}$

$$\text{so } (a, b) = \left(-\frac{8}{9}, \frac{-16\sqrt{2}}{9} \right)$$

$$= \left[|a + \sqrt{2}b| \right] = \left[\left| \frac{-8 - 32}{9} \right| \right] = 4$$

CAREER POINT