

CAREER POINT

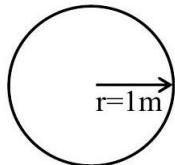
JEE Main Online Exam 2026

Memory Based Questions & Solution

24th January 2026 | Morning

PHYSICS

1. Electric potential at a point is $V = Ar^3 + B$. Find charge enclosed in a sphere of radius 1 m, centered at $r = 0$


(1) $-4\epsilon_0 A$ (2) $-8\epsilon_0 A$ (3) $-12\epsilon_0 A$ (4) $-16\epsilon_0 A$

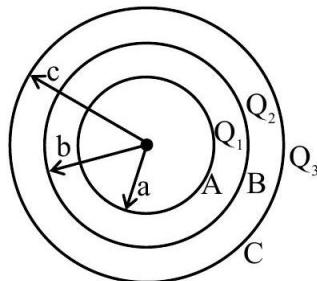
Ans. [3]

Sol. $E = -\frac{dv}{dr}$

$$E = -3Ar^2$$

Charge enclosed in 1 m radius is

Applying guass law


$$\oint \epsilon \cdot ds = \frac{q_{in}}{\epsilon_0}$$

$$E \cdot S = \frac{q_{in}}{\epsilon_0}$$

$$q_{in} = \epsilon_0 E \cdot S = -\epsilon_0 \cdot (3Ar^2) \cdot (4\pi r^2)$$

$$q_{in} \Big|_{r=1 \text{ m}} = -12\epsilon_0 A$$

2. Three uniformly charged concentric shells are kept as shown in the diagram. Charges on individual shells are as shown. Find the final potential on each shell :

$$(1) V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$V_C = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$(3) V_A = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

Ans. [4]

$$V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

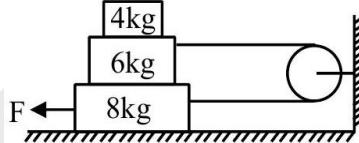
$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{KQ_1}{c} + \frac{KQ_2}{c} + \frac{KQ_3}{c} = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

$$(2) V_A = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_B = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$


$$(4) V_A = \frac{KQ_1}{a} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

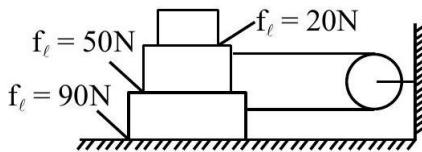
$$V_B = \frac{KQ_1}{b} + \frac{KQ_2}{b} + \frac{KQ_3}{c}$$

$$V_C = \frac{K(Q_1 + Q_2 + Q_3)}{c}$$

3. Figure shows three block with masses 8 kg, 6 kg and 4 kg. Friction coefficient between each surface is $\frac{1}{2}$.

The maximum value of force ' F ' such that 8 kg block moves with constant velocity will be :

(1) 210 N


(2) 400 N

(3) 110 N

(4) 300 N

Ans. [1]

Sol. For 8 kg to move with constant velocity $F_{net} = 0$.

$$\therefore F = 90 + T + 50 \text{ (for 8 kg block)}$$

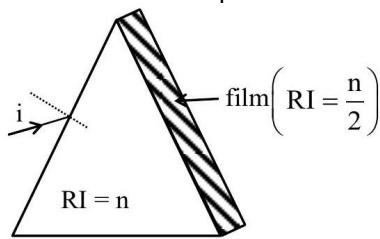
$$T = 20 + 50 \text{ (for 6 kg block)}$$

$$\therefore F = 210 \text{ N.}$$

4. **Statement-I:** Greater is the mass of nucleus, more will be its binding energy.

Statement - II : Nucleus with less $\frac{BE}{A}$ (Binding energy/nucleon) breaks into nucleus with higher $\frac{BE}{A}$.

Choose the correct option :


(1) Statement I is true & statement II is false
 (3) Both are true

(2) Statement I is false & statement II is true
 (4) Both are false

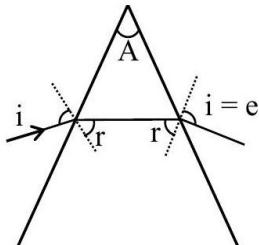
Ans. [3]

Sol. On increasing number of nucleon, BE increase but stability of nucleus depends on BE / A .

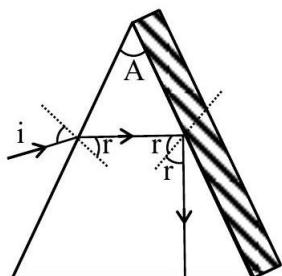
5. Light is incident at such an angle so that minimum deviation takes place. Now a film of refractive index ($RI = \frac{n}{2}$) is stick on other face such that total internal reflection takes place on second surface. Find angle of prism :

(1) 60°

(2) 50°


(3) 90°

(4) 30°


Ans.

[1]

Sol. $i = e$ & $r = A / 2$ for minimum deviation

For TIR ; $r > \theta_c$

$$\sin r > \sin \theta_c$$

$$\sin r > \frac{n/2}{n}$$

$$\sin r > \frac{1}{2}$$

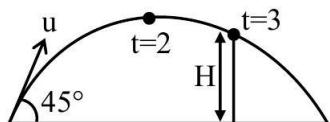
$$\sin \frac{A}{2} > \sin 30^\circ$$

$$\frac{A}{2} > 30^\circ$$

$$A > 60^\circ$$

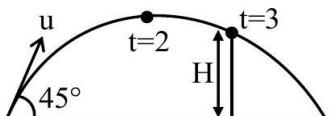
6. There is a compound microscope of lenses having focal lengths 2 cm and 5 cm and tube length 10 cm . Find magnifying power in normal adjustment. If your answer is 5^α , find ' α ' :

Ans.


[2]

Sol. $f_0 = 2$ cm, $f_e = 5$ cm

$$\ell = 10 \text{ cm}$$


$$M = \frac{\ell}{f_0} \cdot \frac{D}{f_e} = 25$$

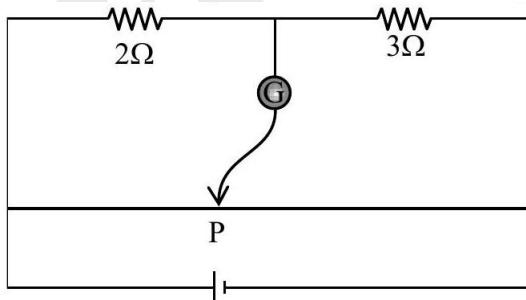
7. A projectile is projected with certain speed at an angle of 45° with horizontal as shown. At $t = 2$ s, projectile is at maximum height and at $t = 3$ s, it just touches a wall at a height H above horizontal. Find H in meters :

Ans. [3]

$$\text{Sol. } T = \frac{2u_y}{g} = 4$$

$$\Rightarrow u_y = \frac{40}{2} = 20 \text{ m/s}$$

$$u_x = 20 \text{ m/s}$$


$$\Delta y = u_y \Delta t - \frac{1}{2} g(\Delta t)^2$$

$$\Rightarrow H = 20 \times 3 - 5 \times 9$$

$$= 60 - 45$$

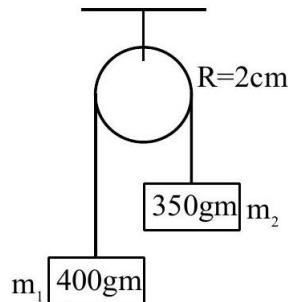
$\equiv 1.5 \text{ m}$

8. Figure shows a meter-bridge. Initially null point was achieved at point P as shown in the figure.

When an unknown resistance " R " is connected in parallel with 3Ω the null point was shifted by 22.5 cm. Then the value of unknown resistance is :

(1) 2Ω (2) 3Ω (3) 2.5Ω (4) 5Ω

Ans. [1]


Sol. Initially, $\frac{2}{3} = \frac{40}{60}$

Now when ' R ' connected in parallel

$$\frac{2}{3R} = \frac{40 + 22.5}{60 - 22.5} = \frac{62.5}{37.5}$$

$$\therefore R = 2\Omega$$

9. After release, the blocks moves 81 cm in 9 seconds. Find moment of inertia of the pulley :

(1) $97 \times 10^{-4} \text{ Kg} - \text{m}^2$ (2) $100 \times 10^{-4} \text{ Kg} - \text{m}^2$ (3) $21 \times 10^{-4} \text{ Kg} - \text{m}^2$ (4) $87 \times 10^{-4} \text{ Kg} - \text{m}^2$

Ans. [1]

Sol.
$$a = \frac{(m_1 - m_2)}{m_1 + m_2 + \frac{I}{R^2}} \cdot g$$

$$S = ut + \frac{1}{2}at^2$$

$$\frac{81}{100} = \frac{1}{2} \left(\frac{m_1 - m_2}{m_1 + m_2 + \frac{I}{R^2}} \right) g \times (81)$$

$$500(m_1 - m_2) = (m_1 + m_2) + \frac{I}{R^2}$$

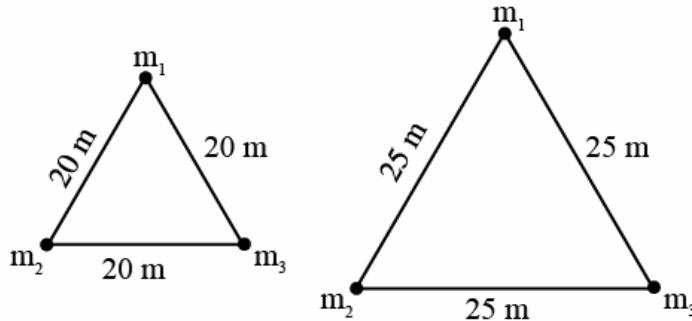
$$500 \left(\frac{50}{1000} \right) = \left(\frac{750}{1000} \right) + \frac{I}{R^2}$$

$$I = 97 \times 10^{-4} \text{ Kg} - \text{m}^2$$

10. Following are two lists, list-I contains the types of electromagnetic waves and list-II contains their source. Match the entries from list-I to appropriate entries from list-II.

	List-I		List-II
(a)	x-rays	(p)	Hot bodies and molecules
(b)	Infrared rays	(q)	Oscillatory current in antennas
(c)	Microwaves	(r)	Magnetron
(d)	Radio waves	(s)	Fast moving electrons striking a metal plate

(1) (a) \rightarrow (r), (b) \rightarrow (q), (c) \rightarrow (s), (d) \rightarrow (q)


(2) (a) \rightarrow (p), (b) \rightarrow (s), (c) \rightarrow (r), (d) \rightarrow (q)

(3) (a) \rightarrow (s), (b) \rightarrow (p), (c) \rightarrow (q), (d) \rightarrow (s)

(4) (a) \rightarrow (s), (b) \rightarrow (p), (c) \rightarrow (r), (d) \rightarrow (q)

Ans. [4]

11. Three masses $m_1 = 200 \text{ kg}$, $m_2 = 300 \text{ kg}$ and $m_3 = 400 \text{ kg}$ are kept at the vertices of an equilateral triangle of side 20 m. If the masses are shifted to new configuration such that they are at the vertices of an equilateral triangle of 25 m now. Find the work done in this process :

(1) $1.735 \times 10^{-7} \text{ J}$ (2) $17.35 \times 10^{-7} \text{ J}$ (3) $173.5 \times 10^{-7} \text{ J}$ (4) $1735 \times 10^{-7} \text{ J}$

Ans. [1]

Sol. Work done by external agent :

$$W_{\text{ext}} = \Delta U$$

$$U_i = \frac{Gm_1 m_2}{r_i} + \frac{Gm_2 m_3}{r_i} + \frac{Gm_1 m_3}{r_i} : r_i = 20 \text{ m}$$

$$U_f = \frac{Gm_1 m_2}{r_f} + \frac{Gm_2 m_3}{r_f} + \frac{Gm_1 m_3}{r_f} : r_f = 25 \text{ m}$$

$$U_i = \frac{-6.67 \times 10^{-11}}{20} [200 \times 300 + 300 \times 400 + 200 \times 400]$$

$$= \frac{-6.67 \times 10^{-11}}{20} \times 26 \times 10^4 = -86.71 \times 10^{-8} \text{ J}$$

$$U_f = \frac{-6.67 \times 10^{-11}}{0.25} [200 \times 300 + 300 \times 400 + 200 \times 400]$$

$$= \frac{-6.67 \times 10^{-11}}{0.25} \times 26 \times 10^4 = -693.68 \times 10^{-9}$$

$$= -69.36 \times 10^{-8} \text{ J}$$

$$W = +\Delta U = 17.35 \times 10^{-8}$$

$$= 1.735 \times 10^{-7} \text{ J}$$

12. A cylindrical body of mass m and cross section A is floating in a liquid of density ρ_L such that its axis is vertical. If body is displaced by a small displacement 'x' vertically, find the time period of oscillation of the body:

$$(1) 2\pi \sqrt{\frac{m}{\rho_L A g}}$$

$$(2) 3\pi \sqrt{\frac{m}{\rho_L A g}}$$

$$(3) 4\pi \sqrt{\frac{m}{\rho_L A g}}$$

$$(4) 5\pi \sqrt{\frac{m}{\rho_L A g}}$$

Ans. [1]

Sol. $\rho_L A \times hg = mg$

After displacing by x ,

$$F = \rho_L A (h + x)g - mg$$

$$F = \rho_L Ahg + \rho_L Axg - mg$$

$$F = \rho_L Axg$$

$$a = \left(\frac{\rho_L A g}{m} \right) x$$

comparing,

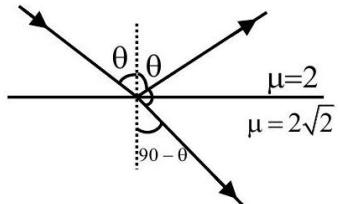
$$a = \omega^2 x$$

$$\omega = \sqrt{\frac{\rho_L A g}{m}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{\rho_L A g}}$$

13. Light wave are incident from a medium of refractive index 2 making an angle θ with normal on to a medium of refractive index $2\sqrt{3}$. What should be the value of θ for which reflected wave and refracted wave will be perpendicular to each other.

(1) 60°


(2) 30°

(3) 53°

(4) 45°

Ans. [1]

Sol.

$$2\sin\theta = 2\sqrt{3}\sin(90 - \theta)$$

$$\tan\theta = \sqrt{3}$$

$$\theta = 60^\circ$$

14. A brass rod is fixed rigidly at two ends at 27°C . If it is cooled to temperature -43°C , tension in rod becomes T_0 . Find temperature (in $^\circ\text{C}$) at which tension will be $1.4 T_0$:

Ans. -71°C

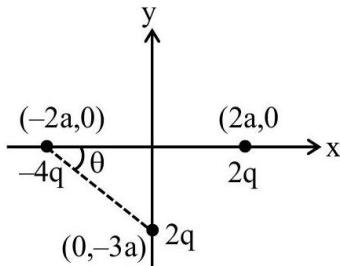
Sol. Thermal stress causes tension

$$T = \alpha y A \Delta T$$

$$-43^\circ\text{C} T_0 = \alpha y A (43 + 27) \quad \dots \text{(i)}$$

$$-t^\circ\text{C} T_0 = \alpha y A (t + 27) \quad \dots \text{(ii)}$$

$$\text{(ii)/(i)}$$


$$1.4 = \frac{t + 27}{70}$$

$$t + 27 = 98$$

$$t = 71^\circ$$

$$\therefore \text{temp } (-71^\circ\text{C})$$

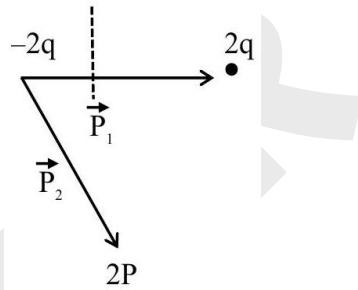
15. In the following configuration of charges. Find the net dipole moment of the system :

(1) $\sqrt{180}qa$

(2) $\sqrt{150}qa$

(3) $\sqrt{200}qa$

(4) $\sqrt{140}qa$


Ans. [1]

Sol. $\vec{P}_1 = (2q)(4a)\hat{i} = 8qa\hat{i}$

$$\vec{P}_2 = (2q)(\sqrt{13}a)(\cos\theta\hat{i} - \sin\theta\hat{j})$$

$$= (3q)(\sqrt{3}a)(\cos\theta\hat{i} - \sin\theta\hat{j})$$

$$= (3q)(\sqrt{3}a)\left(\frac{2}{\sqrt{13}}\hat{i} - \frac{3}{\sqrt{13}}\hat{j}\right)$$

$$= 2qa(2\hat{i} - 3\hat{j})$$

$$\cos\theta = \frac{2}{\sqrt{13}}$$

$$= 4qa\hat{i} - 6qa\hat{j}$$

$$\sin\theta = \frac{3}{\sqrt{13}}$$

$$\vec{P}_{\text{net}} = \vec{P}_1 + \vec{P}_2 -$$

$$= 12qa\hat{i} - 6qa\hat{j}$$

$$|\vec{P}_{\text{net}}| = \sqrt{180}qa$$

16. A spring of spring constant $K = 15 \text{ N/m}$ is cut into two parts of ratio of length $3:1$. Find the spring constant of spring with smaller length (in N/m).

(1) 60

(2) 40

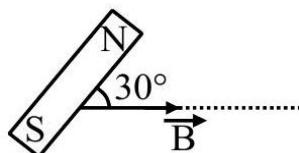
(3) 30

(4) 70

Ans. [1]

Sol.

$$\xrightarrow{\ell} \Rightarrow \xleftarrow{\frac{3\ell}{4}} \xleftarrow{\frac{\ell}{4}}$$


$$K\ell = \text{constant}$$

$$K\ell = K' \left(\frac{\ell}{4} \right)$$

$$K' = 4 \text{ K}$$

$$K' = 60 \text{ N/m}$$

17. A bar magnet is kept such that it is making an angle of 30° with the magnetic field. The torque acting on the magnet is 0.016 N-m . Find the amount of work done by external agent in rotating the magnet from most stable position to most unstable position.

$$(1) 0.064 \text{ J}$$

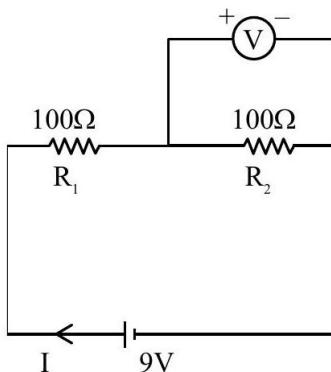
$$(2) 0.020 \text{ J}$$

$$(3) 0.034 \text{ J}$$

$$(4) 0.055 \text{ J}$$

Ans. [1]

$$\text{Sol. } \tau = \mu B \sin \theta \Rightarrow 0.016 = \mu \times B \times \frac{1}{2}$$


$$\Rightarrow \mu = \frac{0.032}{B}$$

$$W_{\text{ext}} = U_f - U_i = \mu B - (\mu B) = 2\mu B$$

$$= 2 \times \frac{0.032}{B} \times B$$

$$= 0.064 \text{ J}$$

18. Two resistors of resistances $R_1 = 100\Omega$ and $R_2 = 100\Omega$ are connected in series. A voltmeter of resistance 400Ω is connected in parallel to one of the resistances. Find the reading of voltmeter. The emf of battery is 9 V :

$$(1) 3 \text{ V}$$

$$(2) 4 \text{ V}$$

$$(3) 2 \text{ V}$$

$$(4) 5 \text{ V}$$

Ans. [2]

Sol. Current in circuit.

$$I = \frac{E}{\text{Req}}$$

$$R_{eq} = 100 + \frac{400 \times 100}{500} = 180\Omega$$

$$\therefore I = \frac{9}{180} = \frac{1}{20} \text{ A}$$

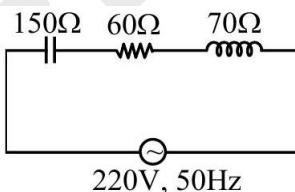
$$\text{Reading of voltmeter} = V = I \times 80 = \frac{1}{20} \times 80 = 4 \text{ V}$$

Ans. [1]

Sol. Closed rigid container

$$V = \text{constant}$$

$$P \propto T$$


$$T_i = 50^\circ\text{C} = 323 \text{ K}$$

$$T_f = 2 \times 50^\circ\text{C} = 100^\circ\text{C} = 373 \text{ K}$$

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{3.23}{P_2} = \frac{323}{373}$$

$$\therefore P_2 = 3730 \text{ Pa}$$

20. Figure shows a circuit consisting capacitor, inductor and a resistor connected in series with an AC source. Find the power factor of the circuit.

Ans. (3)

Sol. Power factor = $\frac{R}{Z}$

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{60^2 + (150 - 70)^2} = 100\Omega$$

$$\therefore \text{Power factor} = \frac{60}{100} = 0.6$$

21. In a H-like ion, ratio of speed of electron in two orbit is $3:2$, then ratio of energies in these orbits should be :

(1) $\frac{3}{5}$ (2) $\frac{9}{4}$ (3) $\frac{1}{4}$ (4) $\frac{3}{4}$

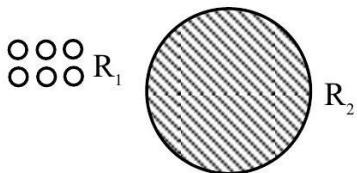
Ans. [2]

Sol. $v = v \cdot \frac{Z}{n}$

$$\frac{v_1}{v_2} = \frac{z_1}{z_2} \cdot \frac{n_2}{n_1} = \frac{3}{2}$$

$$E = -E_0 \frac{z^2}{n^2}$$

$$\frac{E_1}{E_2} = \frac{\left(\frac{z_1}{n_1}\right)^2}{\left(\frac{z_2}{n_2}\right)^2} = \frac{9}{4}$$


22. Terminal velocity of drop of radius 1 cm is 10 cm / sec. 64 such balls are combined to make a large drop. Find terminal velocity of this larger drop. :

(1) 160 cm / sec (2) 140 cm / sec (3) 180 cm / sec (4) 150 cm / sec

Ans. [1]

Sol. $V_T = \frac{2r^2 g}{9n} [\sigma - \rho]$

$$V_T \propto r^2$$

64 drop

$$64 \left(\frac{4}{3} \pi R_1^3 \right) = \frac{4}{3} \pi R_2^3$$

$$R_2 = 4R_1$$

$$\frac{(V_T)_1}{(V_T)_2} = \left(\frac{R_1}{R_2} \right)^2 = \left(\frac{1}{4} \right)^2$$

$$\frac{10}{(V_T)_2} = \frac{1}{16}$$

$$(V_T)_2 = 160 \text{ cm / sec}$$

23. Column-I gives physical quantities and Column-II represent their dimensions. Choose the option representing correct matching.

Column-I		Column-II
(I)	Magnetic field intensity	(P) $MLT^{-2} A^{-2}$
(II)	Magnetic flux	(Q) $ML^2 T^{-2} A^{-2}$
(III)	Magnetic permeability	(R) $ML^2 T^{-2} A^{-1}$
(IV)	Magnetic inductance	(S) $MT^{-2} A^{-1}$

(1) I-S, II-R, III-P, IV-Q
(3) I-R, II-S, III-P, IV-Q

(2) I-Q, II-R, III-P, IV-S
(4) I-S, II-P, III-R, IV-Q

Ans. [1]
Sol. Magnetic field intensity, $B = [MT^{-2} A^{-1}] - S$

 Magnetic Flux, $\phi = [ML^2 T^{-2} A^{-1}] - R$

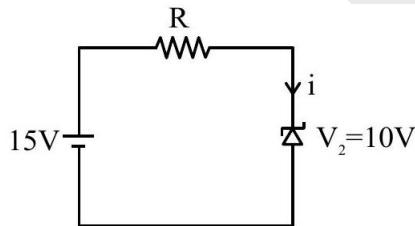
 Magnetic Permeability, $\mu = [MLT^{-2} A^{-2}] - P$

 Magnetic inductance, $L = [ML^2 T^{-2} A^{-1}] - Q$

24. Density of water at $4^\circ C$ is 1000 kg/m^3 and at $20^\circ C$ it is 998 kg/m^3 . If 4 kg of water is heated from $4^\circ C$ to $20^\circ C$, the change in internal energy of water is : (Given : specific heat capacity of water = 4200 J/kg).

 (1) 268799.2 J (2) 268800.8 J (3) 268800.0 J (4) 267765.2 J
Ans. [1]
Sol. $Q = mS\Delta T = 4 \times 4200 \times 16 \text{ J} = 268800 \text{ J}$

$$W = P\Delta V$$


$$\Delta V = \left(\frac{m}{\rho_f} - \frac{m}{\rho_i} \right) = 4 \left[\frac{1}{998} - \frac{1}{1000} \right]$$

$$P = 10^5 \text{ Pa}$$

$$\therefore W = 10^5 \times 4 \times \left[\frac{1}{998} - \frac{1}{1000} \right] = \frac{8 \times 10^5}{10^3 \times 998} \approx 0.8 \text{ J}$$

$$\Delta U = Q - W = 268799.2 \text{ J}$$

25. A zener diode of breakdown voltage 10 V is connected to an external voltage of 15 V and a resistance R in series. If power of zener diode is 0.4 W . Find value of unknown resistance R :

 (1) 125Ω (2) 105Ω (3) 130Ω (4) 115Ω
Ans. [1]
Sol.

$$P_D = 0.4 \text{ W} = 10i$$

$$i = 0.04 \text{ A}$$

$$R = \frac{15 - 10}{0.04} = \frac{5}{0.04} = 125\Omega$$

CAREER POINT

JEE Main Online Exam 2026

Memory Based

Questions & Solution

24th January 2026 | Morning

CHEMISTRY

1. **Statement-I :** K > Mg > Al > B metallic character order.

Statement-II : Ionic radius of any element is less than its atomic radius.

In the light of above statements, choose the most appropriate answer from the options given below :

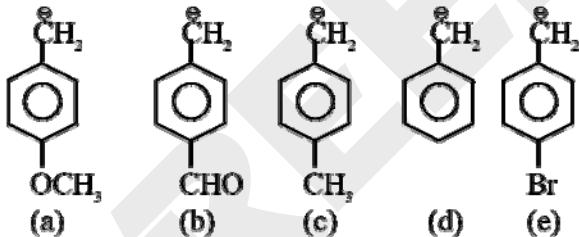
- (1) Both statements are true
- (2) Statement I is false but statement II is true.
- (3) Both statements are False.
- (4) Statement I is true but statement II is false.

Ans. [4]

Sol. Statement-I : Correct

EN ↑ metallic character ↓

Metallic character : K > Mg > Al > B


EN : 0.8 < 1.2 < 1.5 < 2.0

Statement-II : Incorrect

Ionic size $M^+ < M < M^-$

Anionic radius > Atomic radius.

2. The correct order of stability of given carbanions is

(1) a > b > c > d > e (2) b > e > d > a > c (3) a > c > d > e > b (4) b > e > d > c > a

Ans. [4]

Sol. Electron withdrawing group increase the stability of carbanions.

3. **Statement-I :** $[\text{Co}(\text{CO}_3)_3]^{3-}$ has magnetic moment of 4.9 BM & hybridization is $\text{sp}^3 \text{d}^2$

Statement-II : $[\text{Ni}(\text{CN})_4]^{2-}$, $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$ and $[\text{MnF}_6]^{4-}$ have square planar, octahedral and octahedral geometry respectively and dsp^2 , $\text{sp}^3 \text{d}^2$, d^2sp^3 hybridization respectively and $\mu = 0, 4.9 \text{ BM}, 5.9 \text{ BM}$ respectively.

- (1) Both statements are correct
- (2) Statement-I is correct & statement-II is incorrect
- (3) Statement-I is incorrect & statement-II is correct
- (4) Both statements are incorrect.

$$\ln \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = \frac{\Delta E_a}{RT}$$

$$\log \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = \frac{\Delta E_a}{2.303RT}$$

$$= \frac{10 \times 1000}{2.303 \times 8.314 \times 300}$$

$$\log \frac{K_{\text{catalyst}}}{K_{\text{uncatalyst}}} = 1.74$$

7.

List-I (Isothermal Process)		List-I (work done) ($V_f > V_i$)	
P.	Reversible expansion	1.	$w = 0$
Q.	Free expansion	2.	$w = -nRT \ln \frac{V_f}{V_i}$
R.	Irreversible expansion	3.	$w = -P_{\text{ext}} (V_f - V_i)$
S.	Irreversible Compression	4.	$w = -P_{\text{ext}} (V_i - V_f)$

Select the correct match

P	Q	R	S
(A) 4	3	2	1
(B) 2	1	3	4
(C) 1	2	3	4
(D) 3	4	1	2

Ans. [2]

Sol. Theoretical

8. W gm of non-volatile electrolyte solute is added in 100 ml pure water ($P^\circ = 640$ mm Hg) showing vapour pressure of solution 600 mm Hg. This solution have b.p. of 375 K.

Given K_b of $H_2O = 0.52 \frac{K \cdot kg}{mol}$,

Molar mass of solute = M

Select the correct option about mole fraction of solute (X_{solute}).

(1) $\frac{1.3}{8} \left(\frac{W}{M} \right)$ (2) $\frac{8}{1.3} \left(\frac{W}{M} \right)$ (3) $\frac{2.6}{16} \left(\frac{M}{W} \right)$ (4) $\frac{1.3}{8} \left(\frac{M}{W} \right)$

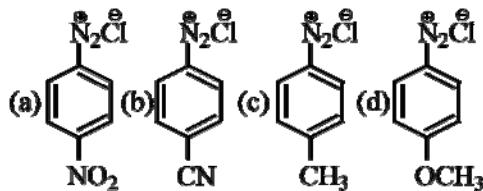
Ans. [1]

Sol. $\Delta T_b = i \times K_b \times m$

$$2 = i \times 0.52 \times \frac{\frac{W}{M}}{\frac{100}{1000}}$$

$$i \times \frac{W}{M} = 2 \times \frac{100}{1000} \times \frac{1}{0.52}$$

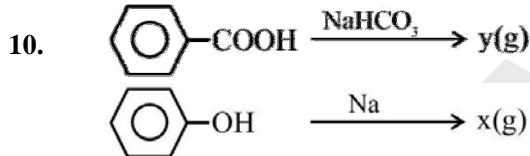
$$i = \frac{1}{2.6} \times \frac{M}{W}$$


$$RLVP = \frac{P^\circ - P_S}{P^\circ} = i \times X_{\text{solute}}$$

$$\frac{640 - 600}{640} = i \times X_{\text{solute}}$$

$$\frac{1}{16} = \frac{1}{2.6} \times \frac{M}{W} \times X_{\text{solute}}$$

$$X_{\text{solute}} = \frac{1.3}{8} \times \frac{W}{M}$$


9. Correct order of stability is :

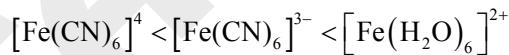
(1) a > b > c > d (2) d > c > b > a (3) b > a > c > d (4) d > b > c > a

Ans. [2]

Sol. +M group or +I group increases stability (i.e. $-\text{OCH}_3$ – CH_3)
 – M decreases stability (i.e. $-\text{NO}_2$ and $-\text{CN}$)

Sum of molar mass of gas (x) & (y) is

(1) 44 (2) 88 (3) 46 (4) 160

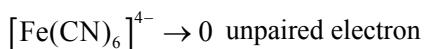
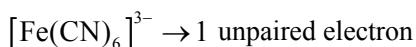
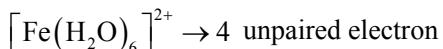
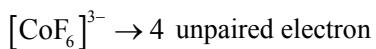

Ans. [3]

Sol. x = H_2 (gas), y = CO_2 (gas)

Sum of molar mass = $2 + 44 = 46$

11. **Statement-I :** Among V_2O_5 , $[\text{TiF}_6]^{3-}$, $[\text{Fe}(\text{CN})_6]^{3-}$, $[\text{CoF}_6]^{3-}$ paramagnetic species are three in number.

Statement-II : Increasing number of unpaired electrons in the following.

(1) Both statements are correct
 (2) Statement-I is correct ; statement-II is incorrect
 (3) Statement-I is incorrect statement-II is correct
 (4) Both statements are incorrect

Ans. [1]

$[\text{TiF}_6]^{3-} \rightarrow 1$ unpaired electron

$[\text{Fe}(\text{CN})_6]^{3-} \rightarrow 1$ unpaired electron

12.

	List-I Species	List-II Hybridization	List-III Shape
(A)	IF_3	sp^3	T-shape
(B)	IF_7	$\text{sp}^3 \text{ d}^3$	P.B.P
(C)	IF_5	$\text{sp}^3 \text{ d}^2$	square pyramidal
(D)	ClO_4^-	$\text{sp}^2 \text{ d}$	square planar

Select the correct match

(1) A, B, C (2) A, B, C, D (3) B, C, D (4) A, B, D

Ans.

[1]

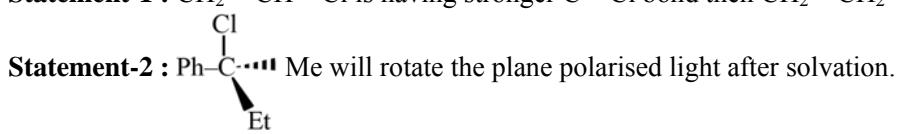
Sol. $\text{ClO}_4^- \rightarrow \text{sp}^3 \rightarrow$ tetrahedral, so (D) is incorrect, all others are correct.

13. Two solutes, 0.3 gm of A (Mw = 60 gm / mol) & 0.9 gm of B (Mw = 180 gm / mol) are dissolved in 100 ml solution. Find osmotic pressure of solution at 300 K (in atm) ($R = 0.082 \text{ atm-L/mol-K}$)

Ans.

[2]

$$\begin{aligned}\pi &= (C_1 + C_2) \\ &= \left(\frac{0.3 \times 1000}{60 \times 100} + \frac{0.9 \times 1000}{180 \times 100} \right) \times 0.082 \times 300 \\ &= 2.46 \text{ atm}\end{aligned}$$

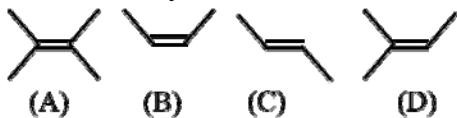

14. Select correct statements(s)

Ans [4]

Sol (1) dipole moment $\text{NF} < \text{NH}$

- (2) O_2^{2-} , F_2 both have $B \cdot O = 1$
- (3) In O_3 central oxygen atom has +1 formal charge
- (4) In NO_2 , octet of 'N' atom is not complete
- (5) BeH_2 is linear, so planar

15. **Statement-1 :** $\text{CH}_2 = \text{CH} - \text{Cl}$ is having stronger C – Cl bond than $\text{CH}_2 - \text{CH}_2 - \text{Cl}$.

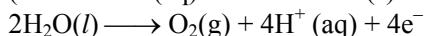
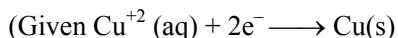


(1) Both statements-I and II are correct
(2) Both statements-I and II are incorrect
(3) Statement-I is correct and statement-II is incorrect
(4) Statement-I is incorrect and statement-II is correct.

Ans. [1]

Sol. Theory based

16. Correct stability order of alkene :

(1) A > D > C > B (2) D > A > B > C (3) A > D > B > C (4) B > C > D > A

Ans. [1]

Sol. Hyperconjugation (+H) and inductive group (+I) increases the stability of alkenes.

17. Electrolysis of aqueous solution of CuSO_4 is carried out, where 300 mg of copper is deposited (atomic mass of Cu = 63.54). After this 600 milli amp. current is further passed for 28 minutes. Calculate total volume of O_2 released (in ml).

Ans. [111]

Sol. Eq of Cu = Eq of O_2

$$\frac{300 \times 10^{-3} \times 2}{63.54} = n_{\text{O}_2} \times 4$$

$$2.36 \times 10^{-3} = n_{\text{O}_2}$$

When current is further passed

$$n_{\text{O}_2} \times 4 = \frac{600 \times 28 \times 60}{96500 \times 1000}$$

$$n_{\text{O}_2} = 2.611 \times 10^{-3}$$

Total O_2 released

$$= [10^{-3} \times (2.36 + 2.611)] \times 22400 \text{ ml}$$

$$= 111.35 \text{ ml}$$

18. Salt (X) is soluble in water.

Salt (Y) is sparingly soluble in water.

Salt (Z) is soluble only in hot water.

X, Y, Z respectively are.

(1) $\text{AgCl}, \text{Hg}_2\text{Cl}_2, \text{PbCl}_2$

(2) $\text{AlCl}_3, \text{AgCl}, \text{PbCl}_2$

(3) $\text{BaCl}_2, \text{PbCl}_2, \text{Hg}_2\text{Cl}_2$

(4) $\text{MgCl}_2, \text{Hg}_2\text{Cl}_2, \text{CaCl}_2$

Ans. [2]

Sol. Theory based.

19. Match the List-I and List-II

(1)	(I) Vinyl chloride
(2)	(II) Allyl chloride
(3)	(III) Aryl chloride
(4)	(IV) Benzyl chloride

(1) A → I, B → II, C → III, D → IV
 (2) A → I, B → II, C → IV, D → III
 (3) A → III, B → II, C → I, D → IV
 (4) A → III, B → II, C → IV, D → II

Ans. [2]

Sol. Common Names

20. Line corresponding to lyman series are $L_1, L_2, L_3, L_4 \dots$, among these L_1 line corresponds to lowest energy. Similarly lines corresponding to balmer series are $B_1, B_2, B_3, B_4 \dots$, among these B_1 line corresponds to lowest energy

$$\Delta E_L = \text{Energy of 1}^{\text{st}} \text{ line of lyman series}$$

$$\Delta E_B = \text{Energy of 1}^{\text{st}} \text{ line of balmer series}$$

$$\text{If } \Delta E_L = x \cdot \Delta E_B$$

$$\text{Calculate } (x \times 10^{-1})$$

Ans. [54]

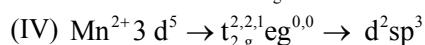
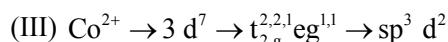
$$\Delta E_L = 13.6 \times Z^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right) = 13.6 Z^2 \times \frac{3}{4}$$

$$\Delta E_B = 13.6 \times Z^2 \times \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = 13.6 \times Z^2 \times \frac{5}{4 \times 9}$$

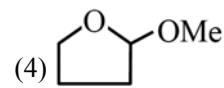
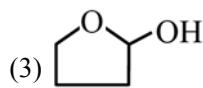
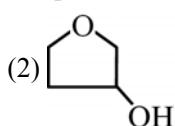
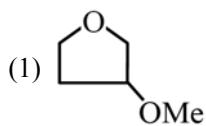
$$\frac{\Delta E_L}{\Delta E_B} = \frac{3}{5} \times 9 = \frac{27}{5} = x$$

$$= \left(\frac{27}{5} \times 10 \right) \times 10^{-1}$$

21. Select correct statements.

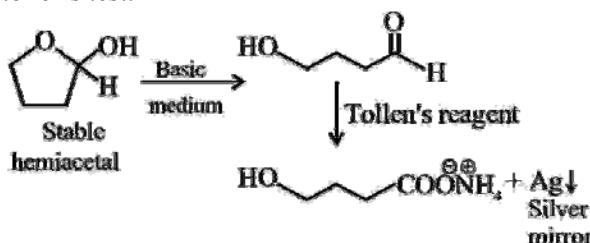


(I) Hybridisation of ClO_4^- is dsp^2
 (II) $[\text{Ni}(\text{CN})_4]^{2-}$ is tetrahedral
 (III) $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$ has $\text{sp}^3 \text{ d}^2$ hybridisation
 (IV) $[\text{Mn}(\text{CN})_6]^{4-}$ has $\text{sp}^3 \text{ d}^2$ hybridisation

(1) II and III and (2) III only (3) II, III and IV only (4) I, II, III and IV

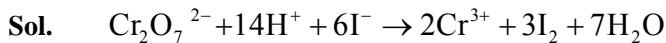




Ans. [2]

Sol. (I) $\text{ClO}_4^- \rightarrow \text{sp}^3$

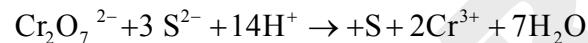
(II) $\text{Ni}^{2+} \rightarrow 3 \text{ d}^8 \rightarrow \text{dsp}^2$ (square planar)



22. Which of the following gives positive tollen's test ?

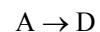

Ans. [3]

Sol. In basic medium cyclic hemiacetal isomers to open hydroxyl aldehyde compound which easily gives positive tollen's test.



23. x & y are the number of moles of electrons involved respectively during oxidation of I^- to I_2 & S^{2-} to S by acidified $\text{K}_2\text{Cr}_2\text{O}_7$. The value of $x + y$ is?

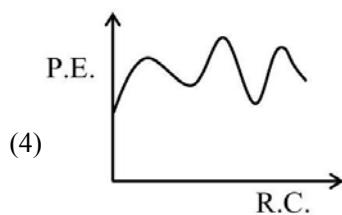
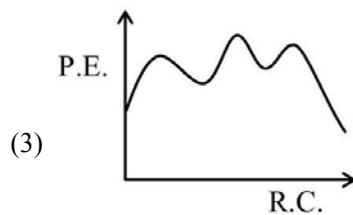
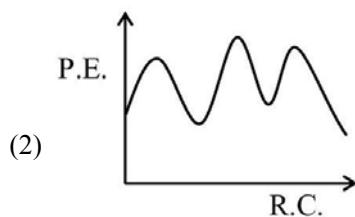
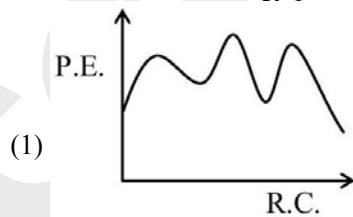
Ans. [12]


no. of moles e^- involved = $x = 6$

No. of moles e^- involved = $y = 6$

Sum of $x + y = 6 + 6 = 12$

24. For a chemical reaction :





Mechanism is

Step-1 : $\text{A} \rightarrow \text{B} : \Delta\text{H} = +\text{ve}$

Step-2 : $\text{B} \rightarrow \text{C} : \Delta\text{H} = -\text{ve}$

Step-3: $\text{C} \rightarrow \text{D} : \Delta\text{H} = -\text{ve}$

Select the correct energy plot

Ans. [1]

Sol. $\Delta H = E_{\text{Product}} - E_{\text{Reactant}}$

25. 0.5 gm of unknown organic compound undergo Duma's method for estimation of nitrogen. Percentage of nitrogen gas collected over water at $P = 715$ mm and 27°C has volume = 70 ml. Calculate % N in the unknown organic compound. (aq. Tension = 15 mm)

Ans. [14.65]

$$\text{P}_{\text{N}_2} = (715 - 15) \text{ mm} = \frac{700}{760} \text{ atm}$$

$$V_{\text{N}_2} = 70 \text{ ml} = \frac{70}{1000} \text{ l}$$

$$n_{\text{N}_2} = \frac{PV}{RT} = \frac{\left(\frac{700}{700}\right) \times \left(\frac{70}{1000}\right)}{0.821 \times 300}$$

$$W_{\text{N}_2} = \frac{700}{700} \times \frac{1000}{0.821 \times 300} \times 28$$

$$\% \text{ N} = \frac{W_{\text{N}_2}}{0.5} \times 100 = \frac{700}{760} \times \frac{\frac{70}{1000} \times 28}{0.5} \times 100$$

$$= 14.65\%$$

JEE Main Online Exam 2026

Memory Based Questions & Solution

MATHEMATICS

Ans. [3]

Sol.	(a, b)	(c, d)
	(1,1)	x
	(1,2)	x
	(1,3)	(1,2)
	(1,4)	(2,2)
	(2,1)	(1,1)
	(2,2)	(2,1)
	(2,3)	(3,1)
	(2,4)	(4,1)
	(3,1)	x
	(3,2)	x
	(3,3)	(1,3)
	(3,4)	(2,3)
	(4,1)	(1,2)
	(4,2)	(2,2)
	(4,3)	x
	(4,4)	(4,2)

2. If the domain of $f(x) = \log_{(10x^2-17x+7)}(18x^2-11x+1)$ is $(-\infty, a) \cup (b, c) \cup (d, \infty) - \{e\}$, then find 90
 $(a+b+c+d+e)$:

(1)

Ans. [1]

$$(9x-1)(2x-1) > 0 \Rightarrow x > \frac{1}{2} \text{ or } x < \frac{1}{9} \quad \dots(1)$$

$$10x^2 - 17x + 7 > 0$$

$$(10x-7)(x-1) > 0$$

$$x > 1 \text{ or } x < \frac{7}{10} \quad \dots(2)$$

$$10x^2 - 17x + 7 > 0$$

$$10x^2 - 17x + 6 \neq 0$$

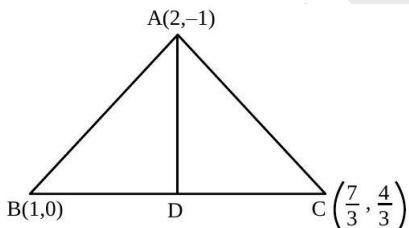
$$(5x-6)(2x-1) \neq 0$$

$$x \neq \frac{6}{5}, \frac{1}{2} \quad \dots(3)$$

Eq. (1) & (2) & (3)

$$x \in \left(-\infty, \frac{1}{9}\right) \cup \left(\frac{1}{2}, \frac{7}{10}\right) \cup (1, \infty) - \left\{\frac{6}{5}\right\}$$

$$a = \frac{1}{9}, b = \frac{1}{2}, c = \frac{7}{10}, d = e, 1, e = \frac{6}{5}$$


$$90(9 + b + c + d + e)$$

$$= 316$$

3. Let the vertices of the triangle are $(1,0), (2,-1), \left(\frac{7}{3}, \frac{4}{3}\right)$. If the equation of internal angle bisector through $(2,-1)$ is $\alpha x + \beta y = 5$ then value of $(\alpha^2 + \beta^2)$ is:

Ans. [10]

Sol.

$$\frac{BD}{DC} = \frac{AB}{AC} = \frac{\sqrt{2} \times 3}{5\sqrt{2}} = \frac{3}{5}$$

$$D = \left(\frac{12}{8}, \frac{4}{8}\right) = \left(\frac{3}{2}, \frac{1}{2}\right)$$

$$\text{Slope of } AD = \frac{-3/2}{1/2} = -3$$

$$3x + y = 5$$

$$\alpha = 3, \beta = 1; \alpha^2 + \beta^2 = 10$$

Ans. [1]

Sol. Let first 10 numbers are $x_1, x_2, \dots, x_9, \alpha$

$$\Rightarrow \alpha + \sum_{i=1}^9 x_i = 100 \Rightarrow \sum_{i=1}^9 x_i = 100 - \alpha$$

$$\text{Variance} = \left(\frac{\sum x_i^2}{n} \right) - \left(\frac{\sum x_i}{n} \right)^2$$

$$\Rightarrow \frac{\sum x_i^2}{n} = 98$$

$$\Rightarrow x_1^2 + x_2^2 + \dots + x_9^2 + \alpha^2 = 1020 \Rightarrow \sum x_i^2 = 1020 - \alpha^2$$

In second case, let number are

$$x_1, x_2, \dots, x_9, \beta$$

$$100 - \alpha + \beta = 101\alpha - \beta + 1 = 0$$

$$\frac{\sum x_i^2 + \beta^2}{10} - (10.1)^2 = 1.99$$

$$\beta^2 - \alpha^2 = 20$$

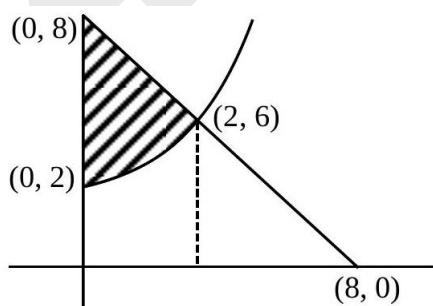
$$\alpha = \frac{19}{2}$$

$$\beta = \frac{21}{2}$$

$$\alpha + \beta = \frac{19 + 21}{2} = 20$$

5. A_1 is the area bounded by $y = x^2 + 2, x + y = 8, y -$ axis in the 1st quadrant and A_2 is the area bounded by $y = x^2 + 2, y^2 = x, x = 0$ and $x = 2$ in the 1st quadrant find $(A_1 - A_2)$:

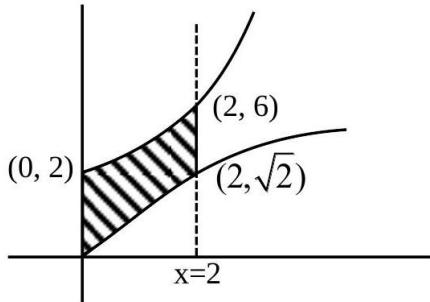
$$(1) \frac{2}{3} + \frac{4\sqrt{2}}{3}$$


$$(2) \frac{3}{2} + \frac{4\sqrt{2}}{3}$$

$$(3) \frac{3}{5} + \frac{4\sqrt{2}}{3}$$

(4) None of these

Ans.


Sol.

$$A_1 = \int_0^2 \left((8-x) - (x^2 + 2) \right) dx$$

$$= A_1 = \int_0^2 (6 - x - x^2) dx$$

$$A_1 \left(6x - \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^2 = 12 - 2 - \frac{8}{3} = 10 - \frac{8}{3} = \frac{22}{3}$$

$$A_2 = \int_0^2 (x^2 + 2) dx - \frac{2}{3}(2\sqrt{2})$$

$$A_2 = \left(\frac{x^3}{3} + 2x \right) \Big|_0^2 - \frac{4\sqrt{2}}{3}$$

$$A_2 = \frac{8}{3} + 4 - \frac{4\sqrt{2}}{3} = \frac{20}{3} - \frac{4\sqrt{2}}{3}$$

$$A_1 - A_2 = \frac{2}{3} + \frac{4\sqrt{2}}{3}$$

6. $\lim_{x \rightarrow 0} \frac{e^x (e^{\tan x - x} - 1) + \ln(\sec x + \tan x) - x}{(\tan x - x)}$

(1) $\frac{3}{2}$ (2) $\frac{3}{2}e$ (3) $\frac{5}{2}e$ (4) $\frac{5}{2}$

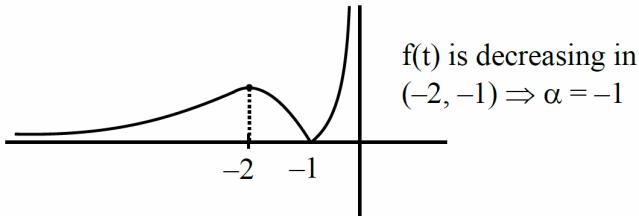
Ans. [1]

Sol. $\lim_{x \rightarrow 0} \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x}$

Applying L'hospital rule

$$\Rightarrow \lim_{x \rightarrow 0} \frac{e^{\tan x} \cdot \sec^2 x - e^x + \sec x - 1}{\sec^2 x - 1}$$

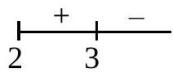
$$\lim_{x \rightarrow 0} \frac{e^{\tan x} (\sec^2 x - 1) + (e^{\tan x} - e^x) + \sec x - 1}{\tan^2 x}$$


$$\lim_{x \rightarrow 0} \left(e^{\tan x} + \frac{e^x (e^{\tan x - x} - 1)}{\tan^2 x} + \frac{1}{\sec x + 1} \right)$$

$$\Rightarrow 1 + 0 + \frac{1}{2} = \frac{3}{2}$$

7. Given $f(t) = \left| \frac{t+1}{t^2} \right|$; ($t < 0$) is strictly decreasing in the interval $(2\alpha, \alpha)$ then maximum value of $g(x) = 2\log_e(x-2) + \alpha x^2 + 4x - \alpha$ is

Ans. [4]


Sol. Drawing graph of $f(t)$ for $t < 0$

$$g(x) = \log_e(x-2) - x^2 + 4x + 1; x > 2$$

$$g'(x) = \frac{2}{x-2} - (2(x-2)); x > 2$$

$$g'(x) = \frac{1-(x-2)^2}{(x-2)} = \frac{-(x-3)(x-1)}{(x-2)}$$

as $x > 2$

maxima occur at $x = 3$

$$g(3) = 2\log_e 1 - 9 + 12 + 1 = 4$$

8. If $\cot x = \frac{5}{12}$ for some $x \in \left(\pi, \frac{3\pi}{2}\right)$ then $\sin 7x \left(\cos \frac{13x}{2} + \sin \frac{13x}{2} \right) + \cos 7x \left(\cos \frac{13x}{2} - \sin \frac{13x}{2} \right)$ is equal to :

(1) $\frac{1}{\sqrt{13}}$

(2) $\frac{5}{\sqrt{13}}$

(3) $-\frac{1}{\sqrt{13}}$

(4) $\frac{8}{\sqrt{13}}$

Ans. [1]

Sol. $\cot x = \frac{5}{12} \Rightarrow \cos x = \frac{-5}{13} = 2\cos^2 \frac{x}{2} - 1$

$$\cos\left(\frac{x}{2}\right) = -\frac{2}{\sqrt{13}} \text{ or } \frac{2}{\sqrt{13}} \text{ (rejected)}$$

$$\left\{ \because \frac{x}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \right\}$$

$$\left(\sin 7x \frac{\sin 13x}{2} + \cos 7x \frac{\cos 13x}{2} \right) + \left(\sin 7x \frac{\cos 13x}{2} - \cos 7x \frac{\sin 13x}{2} \right)$$

$$\cos\left(7x - \frac{13x}{2}\right) + \sin\left(7x - \frac{13x}{2}\right)$$

$$\cos\frac{x}{2} + \sin\left(\frac{x}{2}\right)$$

$$\frac{3}{\sqrt{13}} - \frac{2}{\sqrt{13}} = \frac{1}{\sqrt{13}}$$

9. Let $f(x) = \int \frac{1 - \sin(\ell nt)}{1 - \cos(\ell nt)} dt$ and $f(e^{\pi/2}) = -e^2$ then $f\left(e^{\frac{\pi}{4}}\right)$ is :

(1) $e^{-\frac{\pi}{4}}(\sqrt{2} + 1)$ (2) $-e^{\frac{\pi}{4}}(\sqrt{2} + 1)$ (3) $-e^{\frac{\pi}{4}}(\sqrt{2} - 1)$ (4) $e^{\frac{\pi}{4}}(\sqrt{2} - 1)$

Ans. [2]

Sol. $f(t) = \int \frac{1 - \sin(\ln t)}{1 - \cos(\ln t)} dt$

Let $\ln t = x \Rightarrow t = e^x \Rightarrow dt = e^x dx$

$$= \frac{1}{2} \int \left(\operatorname{cosec}^2 \frac{x}{2} - 2 \cot \frac{x}{2} \right) e^x dx - t \cot \left(\frac{\ln t}{2} \right) + C$$

$$\left(\because \int (f(x) + f'(x)) e^x dx = f(x) \cdot e^x + C \right)$$

Now $f(e^{\pi/2}) = -e^{\pi/2} \cot\left(\frac{\pi}{4}\right) + C = -e^2$ (given)

$C = 0$

Now $f(e^{\pi/4}) = -e^{\pi/4} \cot\left(\frac{\pi}{8}\right) + C = -e^{\frac{\pi}{4}}(\sqrt{2} + 1)$

10. Consider a geometric sequence 729, 81, 9, 1, If P_n denotes the product of $1^{\text{st}} n$ terms of G.P. such that

$$\sum_{n=1}^{40} (P_n)^{\frac{1}{n}} = \frac{3^\alpha - 1}{2 \times 3^\beta}, \text{ then value of } (\alpha + \beta) \text{ is :}$$

(1) 72 (2) 74 (3) 73 (4) 75

Ans. [3]

Sol. $P_n = 729.81.9. \dots \dots \dots (n \text{ terms})$

$$= 3^6 \cdot 3^4 \cdot 3^2 \dots \dots \dots 3^{-2n+8}$$

$$P_n = 3^{6+4+2+\dots+(-2n+8)} = 3^{n(7-n)}$$

$$P_n^{1/n} = 3^{7-n}$$

$$\Rightarrow \sum_{n=1}^{40} (P_n)^{\frac{1}{n}} = 3^6 + 3^5 + \dots + (40 \text{ terms})$$

$$= 3^6 \left[\frac{1 - \left(\frac{1}{3} \right)^{40}}{1 - \frac{1}{3}} \right]$$

$$= \frac{3^6 [3^{40} - 1]}{3^{40} \times 2} \times 3^1$$

$$\sum (P_n)^{\frac{1}{n}} = \frac{(3^{40} - 1)}{2 \times 3^{33}}, \alpha = 40$$

$$\beta = 33$$

$$\alpha + \beta = 73$$

11. If $\int_0^{36} f\left(\frac{tx}{36}\right) dt = 4\alpha f(x)$, $y = f(x)$ is standard parabola passing through $(2, 1)$ and $(-4, \beta)$. Then value of β^α is :

Ans. [64]

Sol. $\int_0^{36} f\left(\frac{tx}{36}\right) dt = 4\alpha f(x)$, Put $\frac{tx}{36} = y$

$$\frac{dy}{dt} = \frac{x}{36}$$

$$\int_0^x \frac{f(y)36dy}{x} = 4\alpha f(x)$$

$$\int_0^x f(y)dy = \frac{\alpha f(x)x}{9}$$

$$f(x) = \frac{\alpha}{9}(f(x) + xf'(x))$$

$$\left(1 - \frac{\alpha}{9}\right)f(x) = \frac{\alpha x}{9}f'(x) \Rightarrow (9 - \alpha)f(x) = \alpha xf'(x)$$

$$\frac{f'(x)}{f(x)} = \left(\frac{9}{\alpha} - 1\right) \frac{1}{x}$$

$$\log_e f(x) = \left(\frac{9}{\alpha} - 1\right) \log_e x + \log_e c$$

$$f(x) = cx^{\left(\frac{9}{\alpha} - 1\right)} \text{ for standard parabola}$$

$$\frac{9}{\alpha} - 1 = 2$$

$$\alpha = 3$$

$$f(x) = cx^2$$

passing through $(2, 1)$

$$1 = 4c \Rightarrow c = 1/4$$

$$y = \frac{x^2}{4} \text{ passing through } (-4, \beta)$$

$$\beta = 4$$

$$\beta^x = 4^3 = 64$$

12. Let the lines $L_1 : \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$, $\lambda \in \mathbb{R}$ and $L_2 : \vec{r} = (4\hat{i} + \hat{j}) + \mu(5\hat{i} + 2\hat{j} + \hat{k})$, $\mu \in \mathbb{R}$ intersect at the point R. Let P and Q be the points lying on the line L_1 & L_2 respectively. Such that $|PR| = \sqrt{29}$ and $|PQ| = \sqrt{\frac{47}{3}}$. If the point P lies in the first octant then $27(QR)^2$ is :

(1) 340

(2) 360

(3) 320

(4) 348

Ans. [2]

Sol. For POI

$$2\lambda + 1 = 5\mu + 4; 3\lambda + 2 = 2\mu + 1; 4\lambda + 3 = \mu$$

$$\Rightarrow \lambda = \mu = -1$$

$$R(-1, -1, -1) \ P(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$$

$$\text{PR}^2 = 29 \Rightarrow (2\lambda + 2)^2 + (3\lambda + 3)^2 + (4\lambda + 4)^2 = 29$$

$\Rightarrow \lambda = 0$ or $\lambda = -2$ (Reject)

$\Rightarrow P(1,2,3)$

$$Q(5\mu+4, 2\mu+1, \mu)$$

$$|PQ| = \sqrt{\frac{47}{3}} \Rightarrow PQ^2 = \frac{47}{3}$$

$$\Rightarrow (5\mu + 3)^2 + (2\mu - 1)^2 + (\mu - 3)^2 = \frac{47}{3}$$

$$\Rightarrow \mu = -\frac{1}{3}$$

$$Q = \left(\frac{7}{3}, \frac{1}{3}, -\frac{1}{3} \right)$$

$$(QR)^2 = \left(\frac{7}{3} + 1\right)^2 + \left(\frac{1}{3} + 1\right)^2 + \left(-\frac{1}{3} + 1\right)^2$$

$$= \frac{100 + 16 + 4}{9} = \frac{120}{9}$$

$$\Rightarrow 27 \times (QR)^2 = 27 \times \frac{120}{9} = 360$$

13. The value of $\frac{\sqrt{3}\operatorname{cosec}20^\circ - \sec20^\circ}{\cos20^\circ \cos40^\circ \cos60^\circ \cos80^\circ}$ is :

Ans. [1]

$$\begin{aligned}
 \text{Sol. } E &= \frac{\frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}}{\frac{1}{2} \cdot \frac{1}{4} \cdot \cos 60^\circ} \\
 &= \frac{\left(\sqrt{3} \cos 20^\circ - \sin 20^\circ \right)}{\cos 20^\circ \cdot \sin 20^\circ} 16 \\
 &= \frac{\left(\frac{\sqrt{3}}{2} \cos 20^\circ - \frac{1}{2} \sin 20^\circ \right) 32 \times 2}{2 \cos 20^\circ \cdot \sin 20^\circ} \\
 &= \frac{\sin 40^\circ}{\sin 40^\circ} \times 64 = 64
 \end{aligned}$$

14. z is a complex number satisfying $\left| \frac{z-6i}{z-2i} \right| = 1$ and $\left| \frac{z-8+2i}{z+2i} \right| = \frac{3}{5}$ then $\Sigma |z|^2$ is
 (1) 225 (2) 321 (3) 284 (4) 385

Ans. [4]

Sol. Solving $\left| \frac{z-6i}{z-2i} \right| = 1 \Rightarrow y = 4 \dots (1)$

(where $z = x + iy$)

$$\text{Now solving } \left| \frac{z-8+2i}{z+2i} \right| = \frac{3}{5}$$

$$\Rightarrow x^2 + y^2 - 25x + 4y + 104 = 0 \dots (2)$$

Solving (1) & (2) $\Rightarrow z = 17 + 4i$ & $8 + 4i$

$$\Rightarrow \Sigma |z|^2 = (17)^2 + (4)^2 + (8)^2 + (4)^2 = 385$$

15. Let $5000 < N < 9000$ and N has digits from $\{0, 1, 2, 5, 9\}$ and digits can be repeated then find the number of N divisible by 3 .

Ans. [84]

Sol. [84]

$$\begin{array}{r} 5 \ 9 \ 9 \ 9 \times \\ 0 \ 1 = 3! = 6 \end{array}$$

$$\begin{array}{r} 2 \ 2 = \frac{3!}{2!} = 3 \end{array}$$

$$\begin{array}{r} 5 \ 5 = \frac{3!}{2!} = 3 \end{array}$$

$$\begin{array}{r} 5 \ 2 = 3! = 6 \end{array}$$

$$\begin{array}{r} 5 \ 5 \ 0 \ 2 = 3! = 6 \end{array}$$

$$\begin{array}{r} 0 \ 5 = \frac{3!}{2!} = 3 \end{array}$$

$$\begin{array}{r} 9 \ 2 = 3! = 6 \end{array}$$

$$\begin{array}{r} 9 \ 5 = \frac{3!}{2!} = 3 \end{array}$$

$$\begin{array}{r} 5 \ 2 \ 0 \ 2 = 3 \end{array}$$

$$\begin{array}{r} 0 \ 5 = 6 \end{array}$$

$$\begin{array}{r} 9 \ 2 = 3 \end{array}$$

$$\begin{array}{r} 9 \ 5 = 6 \end{array}$$

$$\begin{array}{r} 5 \ 1 \ 0 \ 0 = 3 \end{array}$$

$$\begin{array}{r} 2 \ 1 = 3 \end{array}$$

$$\begin{array}{r} 5 \ 1 = 3 \end{array}$$

$$\begin{array}{r} 9 \ 0 = 6 \end{array}$$

$$\begin{array}{r} 5 \ 0 \ 0 \ 1 = 3 \end{array}$$

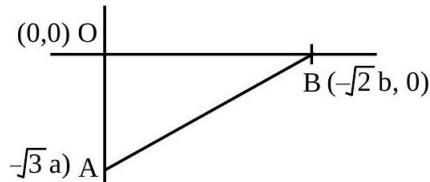
$$\begin{array}{r} 2 \ 2 = 3 \end{array}$$

$$\begin{array}{r} 5 \ 2 = 3! = 6 \end{array}$$

$$\begin{array}{r} 5 \ 5 = 3 \end{array}$$

$$\text{Total} = 8 \times 6 + 12 \times 3$$

$$= 48 + 36$$


$$= 84$$

16. Given triangle OAB where O is the origin, $A = (0, -\sqrt{3}a)$ & $B = (-\sqrt{2}b, 0)$ let the circumradius of ΔOAB is 4 units. If the locus of the centroid of ΔOAB is a circle then its radius is :

(1) $\frac{8}{3}$ (2) $\frac{7}{3}$ (3) $\frac{11}{3}$ (4) $\frac{5}{3}$

Ans. [1]

Sol.

$$4 = \frac{\sqrt{2b^2 + 3a^2}}{2}$$

$$2b^2 + 3a^2 = 8^2$$

$$(h, k) = \left(\frac{-\sqrt{2}b}{3}, \frac{-\sqrt{3}a}{3} \right)$$

$$b = \frac{3h}{-\sqrt{2}}, a = \frac{3k}{-\sqrt{3}}$$

$$2b^2 + 3a^2 = 64$$

$$9h^2 + 9k^2 = 64 \Rightarrow x^2 + y^2 = \left(\frac{8}{3}\right)^2$$

$$r = \frac{8}{3}$$

17. Given that $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \vec{a} \times \vec{b}$, $|\vec{d} \times \vec{c}| = 3$ & $\vec{d} \wedge \vec{c} = \frac{\pi}{4}$ & $|\vec{a} - \vec{d}| = \sqrt{11}$ find $\vec{a} \cdot \vec{d}$

(1) 2 (2) $\frac{3}{2}$ (3) $\frac{1}{2}$ (4) $-\frac{1}{4}$

Ans. [3]

Sol. $\vec{c} = \vec{a} \times \vec{d} = \begin{vmatrix} i & j & k \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{vmatrix} = i - j + k$ (1)

$$|\vec{d} \times \vec{c}| = |\vec{d}| |\vec{c}| \sin \theta = |\vec{d}| \sqrt{3} \cdot \frac{1}{\sqrt{2}} = 3 \text{ (given)}$$

$$\Rightarrow |\vec{d}| = \sqrt{6} \quad \dots(2)$$

Now

$$|\vec{a} - \vec{d}| = \sqrt{11} \Rightarrow |\vec{a}|^2 + |\vec{d}|^2 - 2\vec{a} \cdot \vec{d} = 11$$

$$\Rightarrow 6 + 6 - 2\vec{a} \cdot \vec{d} = 11 \Rightarrow \vec{a} \cdot \vec{d} = \frac{1}{2}$$

$$\frac{2A^2}{B} = \frac{72}{25} \Rightarrow A^2 \frac{36}{25} B$$

$$\frac{9}{25} B^2 = \frac{36B}{25} \Rightarrow B = 4,$$

$$\text{Distance between focii } 2B = 2 \times \frac{4}{5} \times 4 = \frac{32}{5}$$

20. Evaluate the series $\frac{1}{25!} + \frac{1}{3!23!} + \frac{1}{5!21!} + \dots +$ upto 13 terms :

(1) $\frac{2^{26}}{26!}$

(2) $\frac{2^{25}}{26!}$

(3) $\frac{2^{26}}{25!}$

(4) $\frac{2^{25}}{25!}$

Ans. [2]

Sol. $\frac{1}{26!} \left(\frac{26!}{25!1!} + \frac{26!}{3!23!} + \frac{26!}{5!21!} + \dots + 13 \text{ terms} \right)$

$$\frac{1}{26!} \left({}^{26}C_1 + {}^{26}C_3 + {}^{26}C_5 + \dots + {}^{26}C_{25} \right)$$

$$\frac{1}{26!} \left({}^{26}C_1 + {}^{26}C_5 + \dots + {}^{26}C_{25} \right)$$

$$\frac{1}{26!} \times 2^{25}$$

21. Find number of matrices A whose order is 3×2 has elements from the set $\{\pm 2, \pm 1, 0\}$ if $\text{Tr}(A^T A) = 5$:

(1) 310

(2) 312

(3) 320

(4) 325

Ans. [2]

Sol.
$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix}_{3 \times 2}$$

$$A^T A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}_{2 \times 3} \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix}_{3 \times 2}$$

$$= \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 \\ - & b_1^2 + b_2^2 + b_3^2 \end{pmatrix}$$

$$\text{Tr}(A^T A) = a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 = 5$$

$$\{2, 1, 0, 0, 0, 0\}$$

$$\{2, -1, 0, 0, 0, 0\}$$

$$\{-2, 1, 0, 0, 0, 0\}$$

$$\{-2, -1, 0, 0, 0, 0\}$$

$$\{1, 1, 1, 1, 1, 0\}$$

$$\text{No. of ways} = \frac{6!}{4!} \times 4 + 2 \times \frac{6!}{5!} + 2 \times \frac{6!}{4!} + 2 \times \frac{6!}{3!2!}$$

$$= \frac{6!}{3!} + 2 \times 6 + 2 \times 15 \times 2 \times \frac{6!}{3!} \\ = 120 + 120 + 12 + 60 = 312$$

22. Consider an A.P. $a_1, a_2, \dots, a_n, a_1 > 0$, $a_2 - a_1 = \frac{-3}{4}$, $a_n = \frac{a_1}{4}$, $\sum_{n=1}^n a_i = \frac{525}{2}$ then $\sum_{i=1}^{17} a_i$ is equal to:

(1) 231

(2) 234

(3) 236

(4) 238

Ans.

[4]

Sol. $S_n = \frac{n}{2} [a_1 + a_n] = \frac{525}{2}$, $d = \frac{-3}{4}$

$$\frac{n}{2} \left[a_1 + \frac{a_1}{4} \right] = \frac{525}{2}$$

$$\frac{5a_1 n}{4} = 525$$

$$a_1 n = 420$$

$$a_n = a_1 + (n-1) \left(\frac{-3}{4} \right)$$

$$\Rightarrow \frac{-3}{4} a_1 = \left(\frac{-3}{4} \right) (n-1) \Rightarrow a_1 = n-1$$

$$n(n-1) = 420$$

$$n^2 - n - 420 = 0$$

$$(n-21)(n+20) = 0$$

$$n = 21, a_1 = 20$$

$$\sum_{i=1}^{17} a_i = \frac{17}{2} [2a_1 + 16d]$$

$$= \frac{17}{2} \left[40 + 16 \left(\frac{-3}{4} \right) \right]$$

$$= \frac{17}{2} [40 - 12]$$

$$= 17 \times 14 = 238$$

23. There are 10 defective & 90 non-defective balls in a bag. 8 balls are taken one by one with replacement then probability that at least 7 defective balls are selected.

(1) $\left(\frac{73}{10^8} \right)$

(2) $\left(\frac{37}{10^8} \right)$

(3) $\left(\frac{105}{10^8} \right)$

(4) $\left(\frac{11}{10^8} \right)$

Ans.

[1]

Sol. 10 defective & 90 non-defective

Req. probability = (7 def 1 fair) or (8 defective)

$$\text{Req. probability} = \frac{(10^7 \times 90) \times 8 + 10^8}{100^8}$$

$$= \frac{72 \times 10^8 + 10^8}{100^8} = \frac{73}{10^8}$$