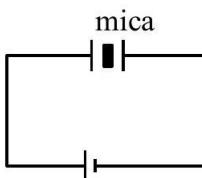
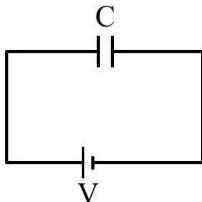


JEE Main Online Exam 2026

Memory Based



Questions & Solution

23rd January 2026 | Evening

PHYSICS

Ans. [1]

Sol.

$$C = \frac{\epsilon_0 A}{5}$$

$$Q_i = CV$$

$$Q_f = C_{eq}V = 1.25 CV$$

$$C_{eq} = \frac{\frac{\varepsilon_0 A}{3} \times \frac{K\varepsilon_0 A}{2}}{\frac{\varepsilon_0 A}{3} + \frac{K\varepsilon_0 A}{2}} = \frac{\varepsilon_0 A 5K}{5(3K + 2)}$$

5CK

$$= \frac{5K}{3K+2}$$

$$\frac{5K}{3K+2} = 1.25 = \frac{5}{4}$$

$$4K = 3K + 2$$

2. A bomb at rest explodes into three pieces in the ratio of masses 2:2:3. The identical masses fly off perpendicular to each other with 18 m / s . Find speed of the third piece.
 (1) $12\sqrt{2}$ m / s (2) $12/\sqrt{2}$ m / s (3) 12 m / s (4) 18 m / s

Ans. [2]

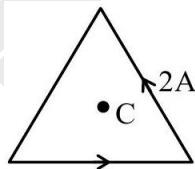
Sol. $7\text{ m} \times 0 = 2\text{ m} \times 18\hat{i} + 2\text{ m} \times 18\hat{j} + 3\text{ m} \times \vec{v}$
 $\vec{v} = -12\hat{i} - 12\hat{j}$
 $|\vec{v}| = 12\sqrt{2}$ m / s

3. Time taken to achieve terminal velocity by a body depends on density of material (ρ), density of liquid (σ), radius of material (r) and viscosity of liquid (η) as $t = k\rho^a r^b \eta^c \sigma^d$. Find $\frac{b+c}{a+d}$?

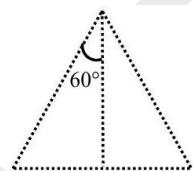
(1) 1 (2) $\frac{1}{2}$ (3) 3 (4) 2

Ans. [1]

Sol. $T = (ML^{-3})^a L^b (ML^{-1} T^{-1})^c (ML^{-3})^d$


$$T = M^{a+c+d} L^{-3a-c-3} T^{-c}$$

on comparing


$$c = -1; a + c + d = 0; -3a - c - 3d + b = 0$$

$$b = 2; a + d = 1$$

4. The equilateral triangular frame has current 2 A . The side of frame is $4\sqrt{3}$ cm . Magnetic field at center C is:

(1) $30\sqrt{3}\mu$ T (2) $10\sqrt{3}\mu$ T (3) $3\sqrt{10}\mu$ T (4) $10\sqrt{10}\mu$ T

Ans. [1]
Sol.

$$B = 3 \left[\frac{\mu_0 i}{4\pi \left(\frac{a}{2\sqrt{3}} \right)} (\sin 60 + \sin 60) \right]$$

$$= \frac{9\mu_0 i}{2\pi a}$$

$$= \frac{9 \times 4\pi \times 10^{-7} \times 2}{2\pi \times (4\sqrt{3}/100)} = 3\sqrt{3} \times 10^{-5} = 30\sqrt{3}\mu \text{ T}$$

5. Dielectric constant of a medium is 3 and its magnetic permeability $\mu = 2\mu_0$. Find ratio of velocity of light in vacuum to velocity of light in medium :

(1) $\sqrt{5}$

(2) $\sqrt{6}$

(3) 2

(4) 3

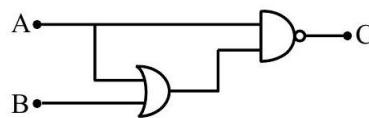
Ans. [2]

Sol. $\frac{c}{v} = \mu = \sqrt{\epsilon_r \mu_r} = \sqrt{3 \times 2} = \sqrt{6}$

6. Which of the following is isobaric pairs :

(1) ${}^3_1\text{C} \& {}^{13}_6\text{C}$

(2) ${}^3_1\text{H} \& {}^3_2\text{He}$


(3) ${}^{14}_7\text{N} \& {}^{13}_6\text{He}$

(4) ${}^{16}_8\text{O} \& {}^{15}_7\text{N}$

Ans. (2)

Sol. Isobars are atoms having same number of nucleons

7. For given logic gate circuit choose correct truth table.

(1)

A	B	C
0	0	1
1	0	1
0	1	1
1	1	0

(2)

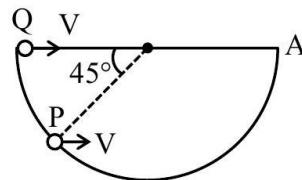
A	B	C
0	0	1
1	0	0
0	1	1
1	1	0

(3)

A	B	C
0	0	0
1	0	0
0	1	0
1	1	1

(4)

A	B	C
0	0	0
1	0	1
0	1	0
1	1	1


Ans. [2]

Sol. $C = \overline{(A + B)} \cdot A$

$C = \overline{A \cdot A + A \cdot B} = \overline{A \cdot (1 + B)} = \overline{A}$

A	B	C
0	0	1
1	0	1
0	1	1
1	1	0

8. Two beads P & Q move along two wires straight and semi circle. At some instant both are shown in figure having same horizontal component of velocity V. Find relation of time taken to reach A by beads :

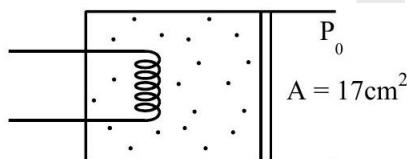
(1) $t_p > t_Q$

(2) $t_p < t_Q$

(3) $t_p = t_Q$

(4) None of these

Ans. [2]
Sol.


X-displacements :

$$X_P < X_Q$$

and average velocity in X -direction of P is > average velocity in X -direction of Q
hence

$$t_p < t_Q$$

9. Internal energy of gas is given as $U = 3nRT$. 1 mole He gas takes 126 J heat and its temperature rise by 4°C . Atmospheric pressure is $P_0 = 10^5 \text{ Pa}$ and area of piston is 17 cm^2 . Find distance moved by piston.

(1) 18.5 cm

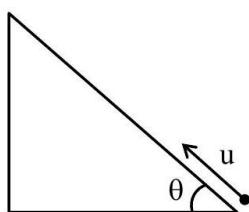
(2) 21.3 cm

(3) 12.3 cm

(4) 10.2 cm

Ans. [1]
Sol. Piston is free to move hence

For isobaric process

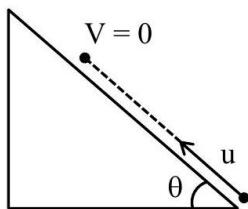

$$\Delta Q = \Delta U + W = 3nR\Delta T + nR\Delta T$$

$$\Delta Q = 4P\Delta V$$

$$126 = 4 \times 10^5 \times A(\Delta x)$$

$$\Delta x = \frac{126}{4 \times 10^5 \times 17 \times 10^{-4}} \\ = 0.185 \text{ m} = 18.5 \text{ cm}$$

10. A particle is projected from bottom of inclined plane with speed u . find distance covered along plane before coming to rest :


(1) $\frac{u^2}{2g\sin\theta}$

(2) $\frac{u^2}{g\sin\theta}$

(3) $\frac{u^2}{g\cos\theta}$

(4) $\frac{u^2}{2g\cos\theta}$

Ans. [1]

Sol.

$$a = -gs \sin \theta$$

$$V^2 = U^2 + 2as$$

$$0 = u^2 - 2gs \sin \theta \cdot s$$

$$s = \frac{u^2}{2gs \sin \theta}$$

11. Speed of sound at $T_1 = 0^\circ\text{C}$ is V_0 and at $T_2 = \alpha^\circ\text{C}$ speed becomes $2V_0$. Find α :

(1) 819°C (2) 918°C (3) 546°C (4) 1092°C

Ans. [1]

$$V = \sqrt{\frac{\gamma RT}{M}}$$

$$\frac{V_1}{V_2} = \frac{\sqrt{T_1}}{\sqrt{T_2}}$$

$$\frac{V_0}{2V_0} = \sqrt{\frac{273}{T_2}}$$

$$\frac{1}{4} = \frac{273}{T_2}$$

$$T_2 = 4 \times 273$$

$$\alpha + 273$$

$$\alpha = 3 \times 273$$

$$\alpha = 819^\circ\text{C}$$

12. A parachutist jumps from a helicopter. It falls freely for 2 sec. Then he opens parachute which produces retardation of 3 m/s^2 . When his height from ground is 10 m his velocity is 5 m/s. Find his initial height from ground.

(1) 90 m (2) 82 m (3) 92.5 m (4) 100 m

Ans. [3]

$$S_1 = \frac{1}{2} \times 10 \times 2^2 = 20 \text{ m}$$

$$v_1 = 0 + g \times 2 = 20 \text{ m/s}$$

For 2nd part of journey :

$$5^2 = 20^2 + 2(-3)S_2$$

$$S_2 = 62.5 \text{ m}$$

$$\text{So, total distance } S = S_1 + S_2 + S_3$$

$$= 20 + 62.5 + 10 = 92.5 \text{ m}$$

13. An experiment is performed for comparing EMF of two cells using a potentiometer. For 1st cell, balancing length was achieved at 200 cm and for 2nd cell it was 150 cm. If least count of measurement of length of potentiometer wire is 1 cm, the percentage error in the ratio of emf of two cells is :

(1) $\frac{8}{7}$

(2) $\frac{7}{6}$

(3) $\frac{5}{6}$

(4) $\frac{3}{2}$

Ans. [2]

Sol. At balancing length $\varepsilon = \lambda \ell$ [λ is potential gradient]

$$\therefore \varepsilon_1 = \lambda \times 200$$

$$\varepsilon_2 = \lambda \times 150$$

$$\text{Let } y = \frac{\varepsilon_1}{\varepsilon_2}$$

$$\therefore \frac{\Delta y}{y} = \frac{\Delta \varepsilon_1}{\varepsilon_1} + \frac{\Delta \varepsilon_2}{\varepsilon_2} = \frac{\Delta \ell_1}{\ell_1} + \frac{\Delta \ell_2}{\ell_2} = \frac{1}{200} + \frac{1}{150} = \frac{7}{600}$$

$$\therefore \% \text{ error} = \frac{7}{6}$$

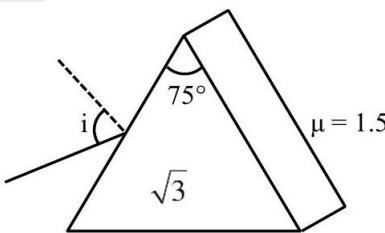
14. A metallic sphere of diameter 2 mm and density 10.5 g / cc is dropped in glycerine having viscosity 10 poise and density 1.5 g / cc. The terminal velocity attained by sphere is ____ cm / s. $\left[\pi = \frac{22}{7}, g = 10 \text{ m} / \text{s}^2 \right]$

(1) 2.0

(2) 1.0

(3) 1.5

(4) 3.0


Ans. [1]

Sol. $V = \frac{2 r^2 g}{9 \eta} (\rho_m - \rho_l)$

$$= \frac{2}{9} \times \frac{(0.1)^2 \times 1000}{10} (10.5 - 1.5)$$

$$= 2 \text{ cm} / \text{s}$$

15. A prism with angle of prism 75° and having refractive index $\sqrt{3}$ has a slab of refractive index 1.5 kept on one side of the prism as shown. Find angle of incidence such that TIR occurs at slab-prism interface. (Given $\sin 15^\circ = 0.25$ and $\sin 25^\circ = 0.43$) :

(1) $10^\circ < \theta < 20^\circ$

(2) $\theta < 25^\circ$

(3) $\theta < 15^\circ$

(4) $15^\circ < \theta < 25^\circ$

Ans. [2]

Sol. For TIR at prism-slab interface,

$$r_2 = \sin^{-1} \left(\frac{1.5}{\sqrt{3}} \right) = 60^\circ$$

$$\therefore r_1 = 15^\circ$$

$$\therefore 1 \sin i = \sqrt{3} \sin 15^\circ = 0.433 \Rightarrow i = 25^\circ$$

$$\therefore \theta < 25^\circ$$

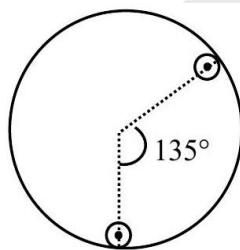
16. When an object is kept at distance 8 cm and 24 cm from a convex lens, magnitude of magnification is same in both cases. Find focal length (in cm) of the lens :
 (1) 18 cm (2) 16 cm (3) 20 cm (4) 8 cm

Ans. [2]

Sol. $m = \frac{f}{f+u}$

$$m_1 = -m_2$$

$$\frac{f}{f-8} = -\frac{f}{f-24}$$


$$f-8 = 24-f$$

$$2f = 32$$

$$f = 16 \text{ cm}$$

17. A disc of mass (M, R) is given. Two discs of radius $\frac{R}{4}$ are cut from this, whose center are at 135° angle.

Their peripheries touch larger disc as shown. If moment of inertia of remaining disc about center is $\frac{\alpha}{256} MR^2$
 find α :

Ans. [109]

Sol. $M = \sigma \pi R^2$

$$\sigma \pi R^2 = 16 \text{ m}$$

$$m = \frac{\sigma \pi R^2}{16}$$

$$I_{\text{system}} = \frac{MR^2}{2} - 2 \left(\frac{mR^2}{2 \times 16} + \frac{9mR^2}{16} \right)$$

$$= \frac{MR^2}{2} - 2 \times \frac{19mR^2}{32}$$

$$= \frac{MR^2}{2} - \frac{19}{16} mR^2$$

$$= \frac{MR^2}{2} - \frac{19}{256} MR^2 \text{ becoz } m = \frac{M}{16}$$

$$= \frac{(128-19)(MR^2)}{256}$$

$$= \frac{109MR^2}{256}$$

18. An air bubble inside water at depth $h = 5 \text{ m}$ rises to surface. At bottom temperature is T_1 and volume is V_1 and at surface the temperature is T_2 . Find final volume (Given that number of moles remains same and $P_0 = 10^5 \text{ Pa}$) :

(1) 6 cm^3 (2) 8 cm^3 (3) 2 cm^3 (4) 1 cm^3

Ans. [3]

Sol. $T_1 = 17^\circ\text{C}$, $V_1 = 2.9 \text{ cm}^3$

$T_2 = 27^\circ\text{C}$

$$\frac{10^5 \times 2.9}{290} = \frac{1.5 \times 10^5 \times V_2}{300}$$

$$V_2 = 2 \text{ cm}^3$$

19. Choose correct option :

(A) Number of photons required for a light beam of 2000 pm wavelength and 1 Joule energy is 1.01×10^{16} .

(B) Light with wavelength 300 nm has energy E_1 and for wavelength 900 nm has energy E_2 , then $\frac{E_1}{E_2} = \frac{1}{3}$.

(C) Frequency of light is 4.5×10^{16} then its wavelength is $6.7 \times 10^{-9} \text{ m}$.

(D) If electrons and protons are accelerated by same potential difference, then their de-Broglie wavelength are equal.

(1) A only (2) A & B only (3) A & C only (4) A, B, C & D

Ans. [3]

20. Two point charges $7\mu\text{C}(-9,0,0)$ and $-2\mu\text{C}(9,0,0)$ are placed in external electric field $\vec{E} = \frac{A}{r^2} \hat{r}$ where $A = 10^3 \text{ SI unit}$. Find potential energy of system?

(1) $-\frac{58}{9} \times 10^{-3} \text{ J}$ (2) $\frac{50}{3} \times 10^{-6} \text{ J}$ (3) $40 \times 10^{-4} \text{ J}$ (4) $2 \times 10^{-5} \text{ J}$

Ans. [1]

Sol. $U = U_{\text{self}} + U_{\text{interaction}}$

$$= q_1 V_1 + q_2 V_2 + \frac{kq_1 q_2}{r}$$

$$\text{Here } V = \int_{\infty}^r E dr = -A \left(-\frac{1}{r} \right)_{\infty}^r = \frac{A}{r}$$

$$\text{So } U = -7 \times 10^{-3} + \frac{7 \times 10^{-6} A}{9} - \frac{2 \times 10^{-6} A}{9}$$

$$= \left(\frac{5}{9} - 7 \right) \times 10^{-3} = -\frac{58}{9} \times 10^{-3} \text{ J}$$

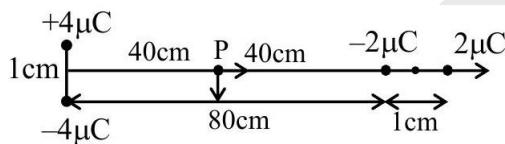
21. A small ring is given some velocity along the axis of a solenoid and it remains coaxial with solenoid. Current in solenoid $i = 10 \sin \omega t$; $\omega = 1000 \text{ rad/s}$. Number of turns per unit length is $500/\text{m}$. Radius of ring is 1 cm and its resistances is 10Ω . Find RMS value of induced current in the ring :

(1) $\sqrt{2} \times 10^{-5} \text{ A}$ (2) $3 \times 10^{-4} \text{ A}$ (3) $\sqrt{2} \times 10^{-4} \text{ A}$ (4) $5 \times 10^{-6} \text{ A}$

Ans. [3]

Sol. EMF induced $\varepsilon = A \frac{dB}{dt} = A\mu_0 n \frac{di}{dt} \varepsilon = A\mu_0 n i_0 \omega \cos \omega t$

current induced $i = \frac{\varepsilon}{R} = \frac{\pi r^2 \mu_0 n i_0 \omega}{R} \cos \omega t$


So $i = \frac{\pi r^2 \mu_0 n i_0 \omega}{\sqrt{2}R}$

$$= \frac{\pi \times 10^{-4} \times 4\pi \times 10^{-7} \times 500 \times 10 \times 10^3}{\sqrt{2} \times 10}$$

$$= \frac{20\pi^2}{\sqrt{2}} \times 10^{-6}$$

$$= \sqrt{2} \times 10^{-4} \text{ A}$$

22. Four charges are kept as shown in the figure. Find magnitude of electric field at point P. P is mid point of line AB.

(1) $625\sqrt{2}$

(2) $5625\sqrt{2}$

(3) $3625\sqrt{2}$

(4) $4525\sqrt{2}$

Ans. [2]

Sol. $E_p = -\frac{KP_1}{r^3} \hat{j} + \frac{2KP_2}{r^3} (\hat{i})$

$$|\vec{E}_{\text{net}}| = \frac{\sqrt{2} \times 2 \times 9 \times 10^9 \times 2 \times 10^{-6} \times 10^{-2}}{(0.4)^3}$$

$$= 5625\sqrt{2}$$

23. Energy released per fission of U-235 is 190 MeV, then total energy released by 47 g of U-235 is $x \times 10^{23}$ MeV. Find the value of x .

Ans. [228]

Sol. Total numbers of U-235 atom is

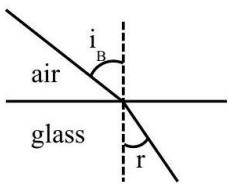
$$47 \text{ g} = \frac{47}{235} \text{ moles} = \frac{1}{5} \text{ moles}$$

$$\therefore \text{Total energy released} = \frac{1}{5} \times 6 \times 10^{23} \times 190 \text{ MeV} = 228 \times 10^{23} \text{ MeV}$$

24. When an unpolarized light falls at a particular angle on a glass plate (placed in air). It is observed that reflected beam is completely polarized the angle of refracted beam with respect to the normal is :

(Given : $\tan^{-1}(1.52) = 57.3^\circ$, $\mu_{\text{air}} = 1$, $\mu_{\text{glass}} = 1.52$)

(1) 57.3


(2) 36.7

(3) 28.65

(4) 61.35

Ans. [2]

Sol.

$$\tan i_B = \frac{n_2}{n_1} = \frac{n_g}{n_a}$$

$$\tan i_B = 1.52$$

$$i_B = 57.6^\circ$$

$$r = 90 - i_B = 36.7^\circ$$

25. One mole of diatomic gas is expanding isothermally from V to $2V$ at $27^\circ C$. If the magnitude of work done by gas in this case is same as the work done in adiabatic process where initial temperature is $27^\circ C$ and final temperature is $T^\circ C$. Find T .

(1) $-37^\circ C$

(2) $-57^\circ C$

(3) $-35^\circ C$

(4) $-55^\circ C$

Ans.

[2]

Sol. $W_{\text{isothermal}} = 1 \times R \times (300) \ln(2)$

$$W_{\text{adiabatic}} = \frac{nR(300 - T)}{\left(\frac{7}{5} - 1\right)} = \frac{5}{2} \times 1 \times R \times (300 - T)$$

$$W_{\text{isothermal}} = W_{\text{adiabatic}}$$

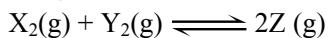
$$300 \ln 2 = \frac{5}{2} (300 - T)$$

$$\frac{5}{2} T = 750 - 300 \ln 2$$

$$T = 216.82 \text{ K}$$

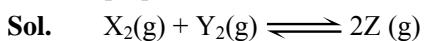
$$T = -56.17^\circ C$$

CAREER POINT

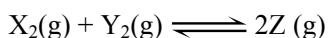

JEE Main Online Exam 2026

Memory Based Questions & Solution

23rd January 2026 | Evening


CHEMISTRY

1. For given reaction


Moles of X_2 , Y_2 & Z are at equilibrium are 3 mole, 3 mole & 9 mole respectively. If 10 moles of Z are added at constant T then find moles of Z at restablished equilibrium.

Ans. [15]

$$K_C = \frac{(9)^2}{3 \times 3} = 9$$

Now 10 moles of Z are added then reaction will move in backward direction.

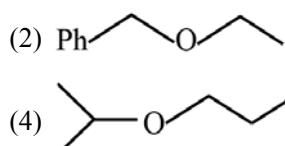
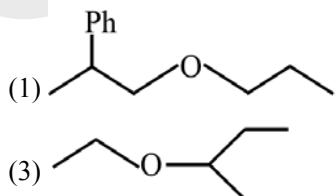
$$K_C = \frac{(19 - 2X)^2}{(3 + X)(3 + X)} = 9$$

$$\frac{19 - 2X}{3 + X} = 3$$

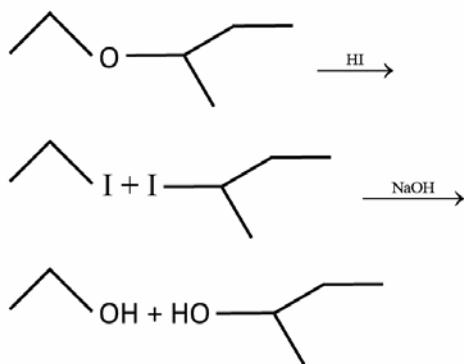
$$19 - 2X = 9 + 3X$$

$$10 = 5X$$

$$X = 2$$



$$\text{At equilibrium} \Rightarrow \text{moles of } Z = 19 - 2 \times 2$$

$$= 15 \text{ moles}$$


2. Organic compound $\xrightarrow[(ii) \text{ A q.NaOH}]{(i) \text{ excess of HI}} Q + R$

Q and R both gives Iodoform test,

Which among the following is (P) from the given organic compound?

Ans. [3]

Sol.

Both products Q & R gives iodoform test.

3. On two metal surfaces, a monochromatic light of 6 eV was incident. They have ratio of their work function and maximum KE as

$$\frac{\phi_1}{\phi_2} = \frac{1}{2}, \frac{(KE_{max})_1}{(KE_{max})_2} = \frac{2.62}{1}$$

Then ϕ_1 and ϕ_2 values are respectively (in eV).

(1) 2.292, 4.584 (2) 4.584, 2.292 (3) 4.584, 9.168 (4) 1.146, 2.292

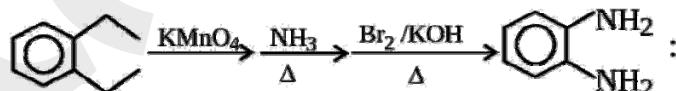
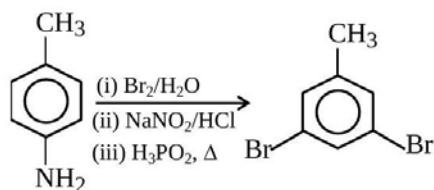
Ans.
[1]
Sol. $KE_{max} = E - \phi$

$$(KE_{max})_1 = 6 - \phi_1 \quad \dots(1)$$

$$(KE_{max})_2 = 6 - \phi_2 \quad \dots(2)$$

By eq. (1) divide eq. (2)

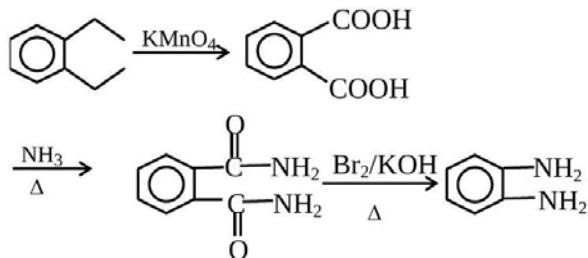
$$\frac{(KE_{max})_1}{(KE_{max})_2} = \frac{2.62}{1} = \frac{6 - \phi_1}{6 - \phi_2}$$



$$\frac{2.62}{1} = \frac{6 - \phi_1}{6 - 2\phi_1}$$

$$15.72 - 5.24\phi_1 = 6 - \phi_1$$

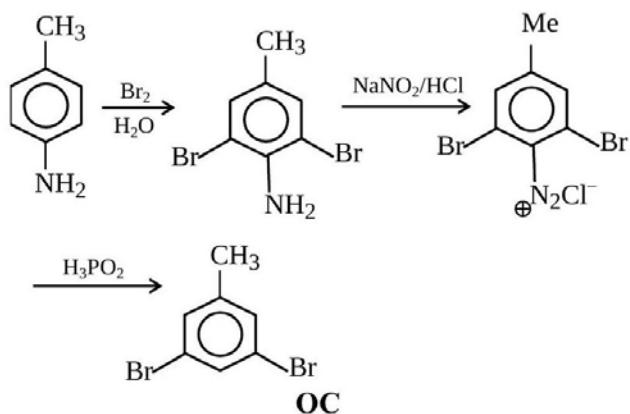
$$9.72 = 4.24\phi_1$$

$$\phi_1 = \frac{9.72}{4.24}$$


$$\phi_1 = 2.292 \text{ eV}, \phi_2 = 4.584 \text{ eV}.$$

4.
Statement-I :

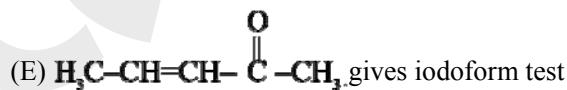
Statement-II :


- (1) Statement-I and Statement-II both are correct
- (2) Statement-I is incorrect Statement-II is correct
- (3) Statement-I is correct Statement-II is incorrect
- (4) Statement-I and Statement-II both incorrect

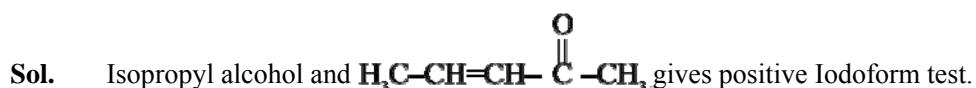
Ans. [

Sol. Statement-I

Statement-II



Ans. [4]


6. Correct statement is :

- (A) NaOCl when reacted with KI gives KOI
- (B) KOI is best reducing agent
- (C) Methanoic acid gives iodoform test
- (D) Isopropyl alcohol gives iodoform test

(1) A,B, C only (2) B, D only (3) D, E only (4) B, C, D only

Ans. [3]

7. Consider the following changes :

Select the correct option

(1) $\Delta G_1^0 > 0, \Delta G_2^0 > 0$ (2) $\Delta G_1^0 > 0, \Delta G_2^0 < 0$ (3) $\Delta G_1^0 < 0, \Delta G_2^0 < 0$ (4) $\Delta G_1^0 < 0, \Delta G_2^0 > 0$

Ans. [2]

Sol. $\rightarrow \text{Pb}^{2+}$ is more stable than Pb^{4+} (inert pair effect)

$$\Rightarrow \Delta G_2^0 < 0$$

$\Rightarrow \Delta G_1^0 > 0$. As Sn^{4+} is more stable than Sn^{2+}

8. 3 moles of liquid A and 1 mole of liquid B are mixed to form an ideal solution. The vapour pressure of solution becomes 500 mm Hg. If 1 mole of A is further added then vapour pressure of solution increases by 20 mm Hg. Find vapour pressure of pure B (P_B^o) in mm Hg ?

Ans. [200]

$$X_A = \frac{3}{4}, X_B = \frac{1}{4}$$

$$P_S = P_A^o X_A + P_B^o X_B$$

$$500 = P_A^o \times \frac{3}{4} + P_B^o \times \frac{1}{4}$$

$$3P_A^o + P_B^o = 2000 \quad \dots(1)$$

Now 1 moles of A is further added so $n_A = 4$ mole, $n_B = 1$ mole

$$X'_A = \frac{4}{5}, X'_B = \frac{1}{5}$$

$$P_S = 520 = P_A^o \times \frac{4}{5} + P_B^o \times \frac{1}{5}$$

$$4P_A^o + P_B^o = 2600 \quad \dots(2)$$

By equation (2) – equation (1)

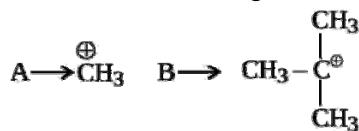
$$P_A^o = 600 \text{ mmHg}$$

$$P_B^o = 200 \text{ mmHg}$$

9. 0.245 gm of an unknown organic compound gave 0.5453 gm of AgCl through Carius method. Calculate % of Cl in unknown compound.

Ans. [55.06]

$$\text{Sol. } \% \text{ Cl} = \frac{\left(\frac{0.5453}{143.5} \right) \times 35.5}{0.245} \times 100$$


$$\% \text{ of Cl} = 55.06$$

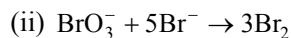
10. How many of the following complexes have unpaired electrons $[\text{Ni}(\text{CO})_4]$, $[\text{NiCl}_4]^{2-}$, $[\text{PtCl}_4]^{2-}$, $[\text{Pt}(\text{CN})_4]^{2-}$, $[\text{Pt}(\text{NH}_3)_2 \text{Cl}_2]$

Ans. [1]

13. Consider the following

Statement-I : B is more stable due to 9α H

Statement-II : A is less stable due to 3α H


- (1) Statement-I and Statement-II both are correct
- (2) Statement-I is incorrect Statement-II is correct
- (3) Statement-I is correct Statement-II is incorrect
- (4) Statement-I and Statement-II both incorrect

Ans. [3]

Sol. Tertiary butyl carbocation has 9α H

Methylcarbocation has zero α H

14. Given at 10 AM, reaction is started

At 10:10 AM, rate of disappearance of Br^- was $2 \times 10^{-3} \text{ M/min}$. and concentration of A was 0.1 M, if both reactions were proceed with same rate at this time then value of k will be ?

- (1) 10^{-3} min^{-1}
- (2) $2 \times 10^{-3} \text{ min}^{-1}$
- (3) $4 \times 10^{-3} \text{ min}^{-1}$
- (4) $8 \times 10^{-3} \text{ min}^{-1}$

Ans. [3]

Sol. Rate of reaction = $\frac{2 \times 10^{-3}}{5} = k[0.1]$

$$k = 4 \times 10^{-3} \text{ min}^{-1}$$

15. **Statement-I :** Size of O^{2-} is smaller than F^- .

Statement-II : Second ionization energy of Na is greater than second ionization energy of Mg.

- (1) Both statements are correct.
- (2) Both statements are incorrect.
- (3) Statement I is correct while Statement II is incorrect.
- (4) Statement I is incorrect while statement II is correct.

Ans. [4]

Sol. Size of $\text{O}^{2-} > \text{F}^-$

IE_2 of Na > IE_2 of Mg

16. If $\text{K}_2\text{Cr}_2\text{O}_7 (200 \text{ cm}^3, x \times 10^{-3} \text{ M})$ reacts with $0.6 \text{ M}, 750 \text{ cm}^3$ Mohr's salt then find value of x ?

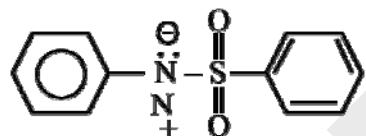
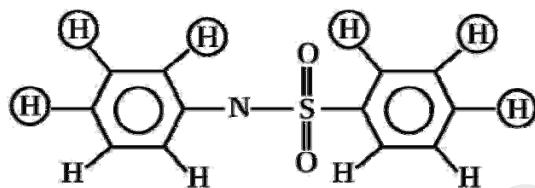
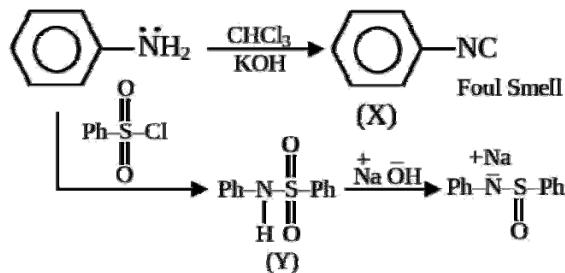
Ans. [375]

$$n_f = 6 \quad n_f = 1$$

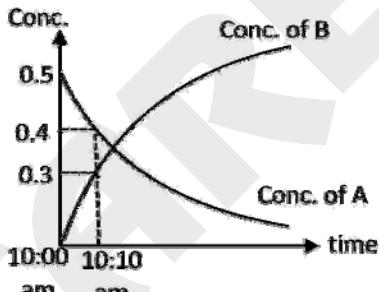
$$V = 200 \text{ cm}^3 \quad V = 750 \text{ cm}^3$$

$$x \times 10^{-3} \text{ M} \quad 0.6 \text{ M}$$

milli eq. of $\text{K}_2\text{Cr}_2\text{O}_7$ = milli eq. of FeSO_4

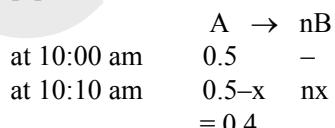



$$6 \times x \times 10^{-3} \times 200 = 1 \times 0.6 \times 750$$

$$x = 375$$


Number of different H -atoms in (Y)

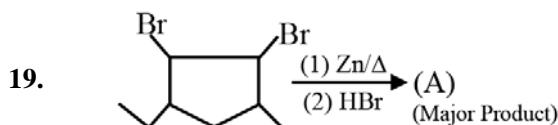
Ans. [2]

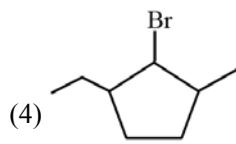
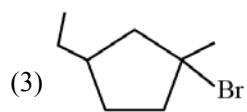
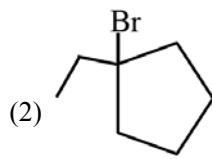
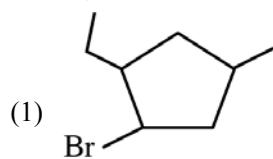
Sol.


18. For a given reaction $A \rightarrow nB$, a graph is given between concentration and time. Find value of n for above reaction, based on the information given in graph for 10 min.

Ans.

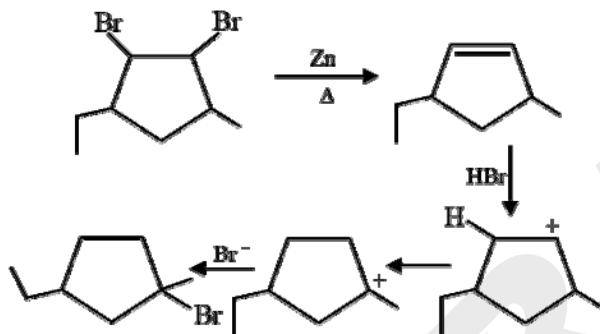
[3]


Sol.





$$x = 0.1$$

$$nx = 0.3$$

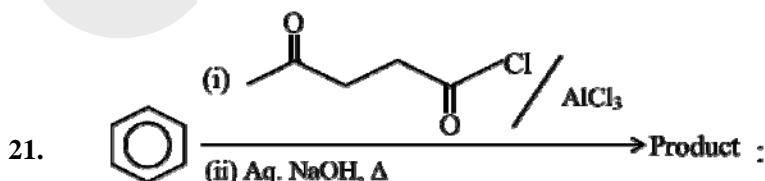
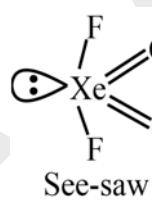
$$n = \frac{0.3}{x} = 3$$



Identify (A) ?

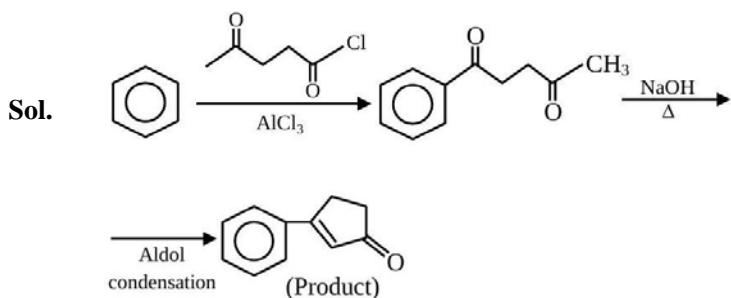
Ans. [3]

Sol.



20. For XeO_2F_2 , select the correct statements :

(A) It has see-saw shape
 (B) $\angle \text{FXeF} \approx 180^\circ$
 (C) $\angle \text{OXeO} \approx 180^\circ$
 (D) Number of valence electron on Xe = 5

(1) A, B, C and D (2) A and B only (3) B and D only (4) A & B only


Ans. [2]

Sol.

Calculate total number of mass percentage of oxygen in the product

Ans. [10.13]

Molecular mass of product = 158

$$\text{Mass \% of oxygen} = \frac{16}{158} \times 100 = 10.13\%$$

22. From the following :

(A) $[\text{Co}(\text{NH}_3)_6]^{3+}$: Inner orbital complex , d^2sp^3 hybridization
 (B) $[\text{MnCl}_6]^{3-}$: Outer orbital complex , sp^3d^2 hybridization
 (C) $[\text{CoF}_6]^{3-}$: Outer orbital complex, d^2sp^3 hybridization
 (D) $[\text{FeF}_6]^{3-}$: Outer orbital complex, sp^3d^2 hybridization
 (E) $[\text{Ni}(\text{CN})_4]^{2-}$: Inner orbital complex , sp^3 hybridization

Choose the correct answer from the given options.

(1) A, B and C only (2) C and E only (3) A, B and D only (4) C, D and E only

Ans. [3]

Sol. (A) $\text{Co}^{3+} 3\text{d}^6 t_{2g}^{2,2,2} e_g^{0,0}$ d^2sp^3 Inner orbital complex
 (B) $\text{Mn}^{3+} 3\text{d}^4 t_{2g}^{1,1,1} e_g^{1,0}$ sp^3d^2 Outer orbital complex
 (C) $\text{Co}^{3+} 3\text{d}^6 t_{2g}^{2,1,1} e_g^{1,1}$ sp^3d^2 Outer orbital complex
 (D) $\text{Fe}^{3+} 3\text{d}^5, t_{2g}^{1,1,1} e_g^{1,1}$ sp^3d^2 Outer orbital complex
 (E) $\text{Ni}^{2+} 3\text{d}^8$ Square planar dsp^2 Inner orbital complex

23. Electronegativity difference between a group 15 element and P is less than electronegativity difference between another group 15 element and P. Those group 15 elements respectively are :

(1) Bi, N (2) Sb, As (3) Sb, Bi (4) N, As

Ans. [1]

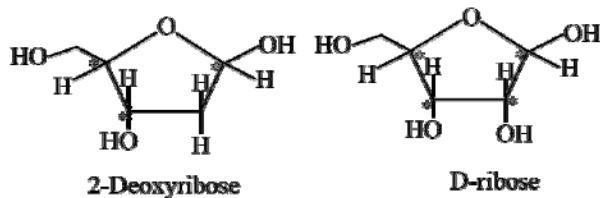
Sol.

	EN
N	3.0
P	2.1
As	2.0
Sb	1.9
Bi	1.9

24. Which of the following are isobars?

(1) $^{232}_{92}\text{U}$ and $^{238}_{92}\text{U}$ (2) ^3_1H and ^2_1H (3) ^3_1H and ^3_2He (4) $^{14}_7\text{N}$ and $^{15}_7\text{N}$

Ans. [3]


Sol. Isobars have same mass number.

25. Both DNA and RNA are chiral molecules. The chirality in DNA and RNA arises due to the presence of :

(1) D-sugar component (2) Phosphodiester linkage
(3) L-sugar component (4) Nitrogenous bases

Ans. [1]

Sol.

JEE Main Online Exam 2026

Memory Based Questions & Solution

MATHEMATICS

Ans. [2]

$$\mathbf{Sol.} \quad \vec{a} \times \vec{b} - 2(\vec{a} \times \vec{c}) = 0$$

$$\vec{a} \times (\vec{b} - 2\vec{c}) = 0 \Rightarrow \vec{b} - 2\vec{c} = \lambda \vec{a}$$

$$|\lambda a|^2 = |\vec{b} - 2\vec{c}|^2 \Rightarrow \lambda^2 |\vec{a}|^2 = b^2 + 4c^2 - 4\vec{b} \cdot \vec{c}$$

$$\lambda^2 = 16 + 16 - 4 \cdot 4 \cdot 2 \cdot \frac{1}{2}$$

$$\lambda^2 = 16$$

$$\lambda = \pm 4$$

$$\therefore \vec{b} - 2\vec{c} = \pm 4\vec{a}$$

Dot with $\vec{c} \Rightarrow \vec{b} \cdot \vec{c} - 2|\vec{c}|^2 = \pm 4(\vec{a} \cdot \vec{c})$

$$4.2. \frac{1}{2} - 2.4 = \pm 4(\vec{a} \cdot \vec{c})$$

$$|\vec{a} \cdot \vec{c}| = 1$$

Ans. [2]

$$\text{Sol. } z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$$

$$z^{201} = \cos\left(201\frac{\pi}{6}\right) + i\sin\left(201\frac{\pi}{6}\right) = -i$$

$$(z^{201} - i)^8 = (-2i)^8 = 256$$

3. If matrices A & B are such that $A = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$, $B(I - A) = (I + A)$, then find B .

$$(1) B = \begin{bmatrix} -1 & 2/3 & 2/3 \\ -2 & 5/3 & -10/3 \\ -2 & 2 & -3 \end{bmatrix}$$

$$(2) B = \begin{bmatrix} -1 & 1/3 & 1/3 \\ -2 & 5/3 & -10/3 \\ -2 & 2 & -3 \end{bmatrix}$$

$$(3) B = \begin{bmatrix} -1 & 0 & 2/3 \\ 0 & 5/3 & -10/3 \\ 2 & 2 & -3 \end{bmatrix}$$

$$(4) B = \begin{bmatrix} -1 & 2/3 & 2/3 \\ -2/3 & 1 & 5/3 \\ -2 & 2 & -3 \end{bmatrix}$$

Ans. [1]

Sol. $I - A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$, $I + A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$

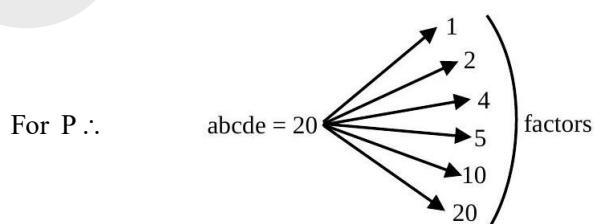
$$|(I - A)| = 1(0) - 2(3) - 3(-3) \\ = -6 + 9 = 3$$

$$(I - A)^{-1} = \frac{1}{3} \begin{bmatrix} 0 & 1 & 1 \\ -3 & 4 & -5 \\ -3 & 3 & -3 \end{bmatrix}$$

$$B = (I + A)(I - A)^{-1}$$

$$B = \frac{1}{3} \begin{bmatrix} 1 & -2 & 3 \\ -2 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ -3 & 4 & -5 \\ -3 & 3 & -3 \end{bmatrix}$$

$$B = \frac{1}{3} \begin{bmatrix} -3 & 2 & 2 \\ -6 & 5 & -10 \\ -6 & 6 & -9 \end{bmatrix}$$


$$B = \begin{bmatrix} -1 & 2/3 & 2/3 \\ -2 & 5/3 & -10/3 \\ -2 & 2 & -3 \end{bmatrix}$$

4. Let S = number of 4 digit numbers abcd, where

$a > b > c > d$ & P = number of 5 digit numbers abcde, where product of digits is 20 , then $S + P =$

Ans. [260]

Sol. $S = {}^{10}C_4 = 210$

$$\therefore \text{Case -}(1) \ 54111 \Rightarrow \frac{5!}{3!} = 20$$

$$\text{Case -}(2) \ 52211 \Rightarrow \frac{5!}{2!2!} = 30$$

$$\therefore P = 20 + 30 = 50$$

$$\therefore S + P = 260$$

5. If $y = f(x)$ satisfies the differential equation

$$(x^2 - 4)y' - 2xy + 2x(4 - x^2)^2 = 0 \text{ and } f(3) = 15, \text{ then find local maximum value of } f(x)$$

(1) 16

(2) 20

(3) 25

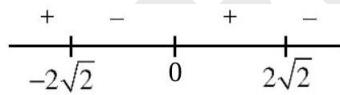
(4) 30

Ans. [1]

$$\frac{(x^2 - 4)\frac{dy}{dx} - 2xy}{(4 - x^2)^2} = -2x$$

$$\frac{d}{dx} \left(\frac{y}{x^2 - 4} \right) = -2x$$

$$\therefore \frac{y}{x^2 - 4} = -x^2 + C$$


$$\left\{ (3, 15) \Rightarrow \frac{15}{5} = -9 + C \Rightarrow C = 12 \right\}$$

$$\Rightarrow \frac{y}{x^2 - 4} = 12 - x^2$$

$$\Rightarrow y = (x^2 - 4)(12 - x^2)$$

$$y' = (x^2 - 4)(-2x) + (12 - x^2) \cdot 2x$$

$$= -4x(x - 2\sqrt{2})(x + 2\sqrt{2})$$

Local maximum value of

$$f(x) = f(\pm 2\sqrt{2})$$

$$= (8 - 4)(12 - 8) = 16$$

6. Let sets $A : \{x : |x - 3| - 3 \leq 1\}, x \in \mathbb{Z}$.

set $B : \left\{ x : x \in R \setminus \{1, 2\} \mid \frac{(x-2)(x-4)}{(x-1)} \log_e |x-2| = 0 \right\}$ then number of onto functions from $A \rightarrow B$.

(1) 61

(2) 62

(3) 63

(4) 64

Ans. [2]

Sol. $A : |x - 3| - 3 \leq 1$

$$\Rightarrow -1 \leq |x - 3| - 3 \leq 1$$

$$2 \leq |x - 3| \leq 4$$

$$2 \leq (x - 3) \leq 4 \text{ or } -4 \leq (x - 3) \leq -2$$

$$5 \leq x \leq 7 \text{ or } -1 \leq x \leq 1$$

$$A = \{-1, 0, 1, 5, 6, 7\}$$

$$B \Rightarrow x = 4, |x - 2| = 1 \Rightarrow x = 3 \text{ or } 1 \text{ (reject) } +$$

$$B = \{4, 3\}$$

Number of onto functions from A to B = $2^6 - 2 = 62$

7. If $\sum_{k=1}^n a_k = \alpha n^2 + \beta n$ & $a_{10} = 59, a_6 = 7a_1$, then find $\alpha + \beta$:

(1) 5

(2) 10

(3) 8

(4) 3

Ans. [1]

Sol. $\because S_n = \alpha n^2 + \beta n$

$$\begin{aligned} \therefore a_n = S_n - S_{n-1} &= \alpha(n^2 - (n-1)^2) + \beta(1) \\ &= (2n-1)\alpha + \beta \end{aligned}$$

$$\therefore a_{10} = 59 \Rightarrow 19\alpha + \beta = 59 \quad \dots\dots(1)$$

$$a_1 = \alpha + \beta$$

$$a_6 = 11\alpha + \beta$$

$$\therefore a_6 = 7a_1$$

$$11\alpha + \beta = 7\alpha + 7\beta$$

$$4\alpha = 6\beta$$

$$2\alpha = 3\beta \quad \dots\dots(2)$$

From (1) & (2)

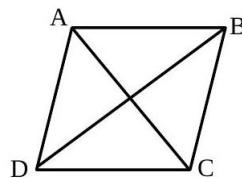
$$19\alpha + \frac{2\alpha}{3} = 59$$

$$\alpha = 3 \Rightarrow \beta = 2$$

$$\therefore \alpha + \beta = 5$$

8. Rhombus ABCD is given with vertices A(1, 2), C(-3, -6) and sides AD & BC are parallel to the line $7x - y = 14$. If coordinates of B & C are (α, β) & (γ, δ) respectively, then find $\alpha + \beta + \gamma + \delta = ?$

(1) -4


(2) 5

(3) -6

(4) -7

Ans. [3]

Sol. Mid points of BD & AC are same

$$\text{As } \frac{\alpha + \gamma}{2} = \frac{1 + (-3)}{2}, \frac{\beta + \delta}{2} = \frac{2 + (-6)}{2}$$

$$\alpha + \gamma = -2, \beta + \delta = -4$$

$$\alpha + \beta + \gamma + \delta = -6$$

Ans. [2]

$$\text{Sol. } x_1 + x_2 + x_3 + x_4 = 16$$

Number of positive integral solution

$$=^{15}\text{C}_3 = 455$$

10. If $\cot\theta = -\frac{1}{2\sqrt{2}}$ where $\theta \in \left(\frac{3\pi}{2}, 2\pi\right)$ then value of $\sin\left(\frac{15\theta}{2}\right)(\sin 8\theta + \cos 8\theta) + \cos\left(\frac{15\theta}{2}\right)(\cos 8\theta - \sin 8\theta)$ is :

Ans. [2]

$$\text{Sol.} \quad \cos\left(8\theta - \frac{15\theta}{2}\right) + \sin\left(\frac{15\theta}{2} - 8\theta\right)$$

$$\cos \frac{\theta}{2} - \sin \frac{\theta}{2} = -\sqrt{1 - \sin \theta}$$

$$= -\sqrt{1 + \frac{2\sqrt{2}}{3}}$$

$$= -\sqrt{\frac{3+2\sqrt{2}}{3}} = -\left(\frac{\sqrt{2}+1}{\sqrt{3}}\right)$$

11. If the point of intersection of ellipses $x^2 + 2y^2 - 6x - 12y + 23 = 0$ and $4x^2 + 2y^2 - 20x - 12y + 35 = 0$ lie on a circle of radius r and centre (a, b) , then the value of $ab + 18r^2$ is

(1) 90 (2) 95

(3) 85

(4) 100

Ans. [2]

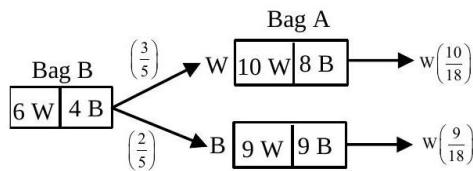
Sol. $4x^2 + 2y^2 - 20x - 12y + 35 = 0$

$$\frac{2(x^2 + 2y^2 - 6x - 12y + 23) = 0}{6x^2 + 6y^2 - 32x - 36y + 81 = 0}$$

$$x^2 + y^2 - \frac{16}{3}x - 6y + \frac{27}{2} = 0$$

$$(a, b) \equiv \left(\frac{8}{3}, 3 \right)$$

$$r = \sqrt{\frac{64}{9} + 9 - \frac{27}{2}} = \sqrt{\frac{87}{18}}$$


$$r^2 = \frac{87}{18} \Rightarrow 18r^2 = 87$$

$$\text{Now, } ab + 18r^2 = 8 + 87 = 95$$

12. Bag A contains 9 White & 8 Black balls and bag B contains 6 White & 4 Black balls. A ball is randomly transferred from bag B to bag A then a ball is drawn from bag A. If probability that drawn ball is White, is $\frac{p}{q}$ (Where p & q are coprime), then $(p + q)$ is

Ans. [23]

Sol.

$$\therefore P(\text{Drawn ball is white}) = \frac{3}{5} \times \frac{10}{18} + \frac{2}{5} \times \frac{9}{18} = \frac{48}{90} = \frac{8}{15} = \frac{p}{q}$$

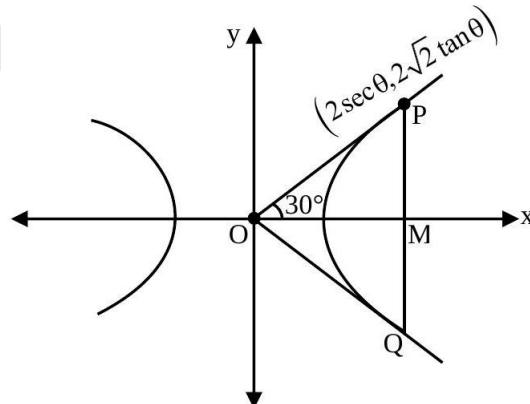
$$\therefore p + q = 23$$

13. If PQ is a chord perpendicular to the transverse axis of $\frac{x^2}{4} - \frac{y^2}{b^2} = 1$ of eccentricity $\sqrt{3}$ such that ΔOPQ is equilateral Δ (where O is the origin), then area of ΔOPQ is :

(1) $\frac{4}{5}\sqrt{3}$

(2) $\frac{2}{5}\sqrt{3}$

(3) $\frac{8}{5}\sqrt{3}$


(4) $\frac{16\sqrt{3}}{5}$

Ans. [3]

Sol. $e = \sqrt{1 + \frac{b^2}{4}} = \sqrt{3}$

$$\Rightarrow b = 8$$

$$\therefore \text{Hyperbola } \frac{x^2}{4} - \frac{y^2}{8} = 1$$

$$\frac{PM}{OM} = \tan 30^\circ$$

Ans. [1]**Sol.** Let $4x + 6 = \frac{1}{t}$

$$dx = \frac{-dt}{4t^2}$$

$$I = \frac{-3}{4} \int \frac{dt}{t^2 \times \frac{1}{t} \times \sqrt{\left(\frac{1}{t} - 6\right)^2 + 2\left(\frac{1}{t} - 6\right) + 3}}$$

$$= \frac{-3}{4} \int \frac{dt}{t \sqrt{\frac{1}{4} \left(\frac{1-6t}{t}\right)^2 + \frac{2}{t} - 9}}$$

$$= \frac{-3}{2} \int \frac{dt}{\sqrt{1-4t}}$$

$$= \frac{-3}{2} \times \frac{-1}{4} \times \frac{(1-4t)^{\frac{1}{2}}}{\frac{1}{2}} + C$$

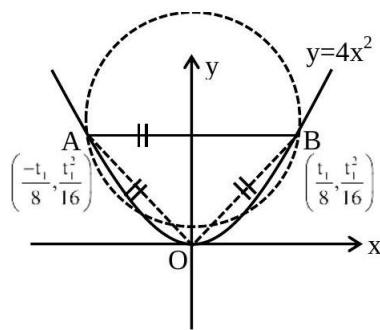
$$= \frac{3}{4} \sqrt{1-4t} + C = \frac{3}{4} \sqrt{1 - \frac{4}{4x+6}} + C$$

$$I(0) = \frac{3}{4} \sqrt{1 - \frac{2}{3}} + C = \frac{\sqrt{3}}{4} \Rightarrow C = 0$$

$$I(x) = \frac{3}{4} \sqrt{1 - \frac{4}{4x+6}}$$

$$\therefore I(1) = \frac{3}{4} \times \sqrt{\frac{6}{10}} = \frac{3\sqrt{6}}{4\sqrt{10}} = \frac{3\sqrt{60}}{40} = \frac{3\sqrt{15}}{20}$$

19. The system of linear equations


$$x + y + z = 6$$

$$2x + 5y + az = 36$$

$$x + 2y + 3z = b$$

(1) Infinitely many solutions for $a = 8$ & $b = 16$ (2) Unique solution for $a = 8$ & $b = 16$ (3) Unique solution for $a = 8$ & $b = 14$ (4) Infinitely many solutions for $a = 8$ & $b = 14$ **Ans. [4]****Sol.** If $D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 5 & a \\ 1 & 2 & 3 \end{vmatrix} = 0 \Rightarrow a = 8$

Sol.

$$OB^2 = AB^2$$

$$\Rightarrow \frac{t_1^2}{64} + \frac{t_1^4}{256} = \frac{t_1^2}{16}$$

$$\Rightarrow 4t_1^2 + t_1^4 = 16t_1^2$$

$$\Rightarrow t_1 = 2\sqrt{3}$$

$$\therefore A\left(\frac{-\sqrt{3}}{4}, \frac{3}{4}\right) \text{ & } B\left(\frac{\sqrt{3}}{4}, \frac{3}{4}\right)$$

Midpoint of AB i.e. centre of circle is $\left(0, \frac{3}{4}\right)$ and radius $= \frac{\sqrt{3}}{4}$

$$\therefore OP = OM - r = \frac{3}{4} - \frac{\sqrt{3}}{4} = \frac{3 - \sqrt{3}}{4}$$

22.
$$f(x) = \begin{cases} \frac{a|x| + 2x^2 - 2\sin|x|\cos|x|}{x} & ; x \neq 0 \\ b & ; x = 0 \end{cases}$$

If $f(x)$ is continuous then value of $a + b$ is equal to

(1) 2

(2) 3

(3) 4

(4) 5

Ans. [1]

Sol. $\lim_{x \rightarrow 0} \left(\frac{a|x| + 2x^2 - 2\sin|x|\cos|x|}{x} \right)$

$$f(0^+) = a - 2$$

$$f(0^-) = -a + 2$$

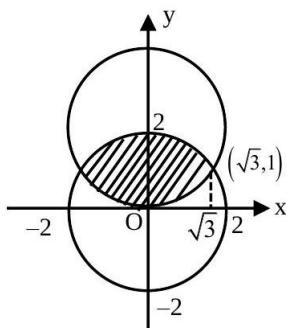
for continuity

$$a - 2 = -a + 2 = b \Rightarrow a = 2 \text{ & } b = 0$$

$$\text{so } a + b = 2$$

23. Find the area bounded by the curves $x^2 + y^2 = 4$ & $x^2 + (y - 2)^2 = 4$

(1) $\frac{8\pi}{3} - 2\sqrt{3}$ Sq. units


(2) $\frac{8\pi}{3} + \sqrt{3}$ Sq. units

(3) $\frac{4\pi}{3} - 2\sqrt{3}$ Sq. units

(4) $\frac{4\pi}{3} + 2\sqrt{3}$ Sq. units

Ans. [1]

Sol.

$$\begin{aligned}
 A &= 2 \int_0^{\sqrt{3}} \left[\sqrt{4-x^2} - (2 - \sqrt{4-x^2}) \right] dx \\
 &= 2 \int_0^{\sqrt{3}} \left(2\sqrt{4-x^2} - 2 \right) dx \\
 &= 4 \int_0^{\sqrt{3}} \left(\sqrt{4-x^2} - 1 \right) dx \\
 &= \left[4 \left[\frac{1}{2} \left(x\sqrt{4-x^2} + 4\sin^{-1} \frac{x}{2} \right) - x \right] \right]_0^{\sqrt{3}} \\
 &= 4 \left[\frac{1}{2} \left(\sqrt{3} + 4 \times \frac{\pi}{3} \right) - \sqrt{3} \right] = 4 \left[\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right] \\
 &= \frac{8\pi}{3} - 2\sqrt{3} \text{ (Sq. units)}
 \end{aligned}$$