

CAREER POINT

JEE Main Online Exam 2026

Memory Based Questions & Solution

22st January 2026 | Evening

PHYSICS

1. Find the dimension of the expression $\frac{\epsilon_0 E}{T}$ where ϵ_0 , E & T are permittivity, electric field and time :

(1) $[AL^{-2}]$ (2) $[AL^{-3}]$ (3) $[AL^{-3} T]$ (4) $\frac{[AL^{-3}]}{T}$

Ans. [1]

Sol.
$$\frac{\epsilon_0 E}{T} = \frac{\epsilon_0}{T} \times \frac{1}{4\pi\epsilon_0} \times \frac{q}{r^2}$$
$$= \frac{[AT]}{[T][L^2]}$$
$$= [AL^{-2}]$$

2. For H atom if shortest wavelength of Lyman series is 91 nm, then find difference of minimum wavelength of Balmer and Paschen series :

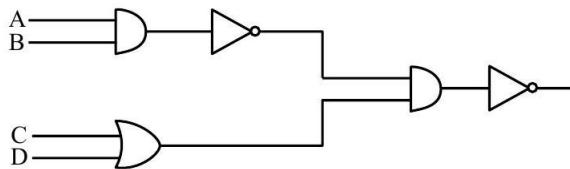
(1) 525 nm (2) 455 nm (3) 305 nm (4) 545 nm

Ans. [2]

Sol. For Lyman:

$$\frac{1}{\lambda} = R \left(\frac{1}{12} - \frac{1}{\infty^2} \right) \Rightarrow \lambda = \frac{1}{R} = 91 \text{ nm}$$

For Balmer shortest wavelength:


$$\frac{1}{\lambda_1} = R \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right) \Rightarrow \lambda_1 = \frac{4}{R}$$

For shortest wavelength of Paschen series

$$\frac{1}{\lambda_2} = R \left(\frac{1}{3^2} - \frac{1}{\infty^2} \right) \Rightarrow \lambda_2 = \frac{9}{R}$$

$$\text{So } \lambda_2 - \lambda_1 = \frac{5}{R} = 455 \text{ nm}$$

3. For given logic gate circuit select correct output corresponding to each input :

A	B	C	D
1	1	1	1
1	0	1	0
0	1	0	1
0	0	1	1

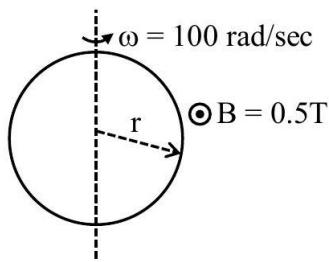
(1) 1,0,0,0

(2) 1,0,1,0

(3) 0,1,0,1

(4) 1,0,0,1

Ans. [1]


Sol. On simplifying :

$$\begin{aligned} \text{Output } Y &= \overline{(A \cdot B)} \cdot (C + D) \\ &= (A \cdot B) + (\overline{C + D}) \end{aligned}$$

4. A ring of radius 'r' mm rotating with 100 rad / sec about its diameter. It is present in a uniform magnetic field 0.5 T perpendicular to the plane of paper. If EMF produced in the ring when it has rotated by 30° is 15.4 mV, find 'r' :

Ans. [14]

Sol.

$$\phi = \pi r^2 B \cos \omega t$$

$$\therefore -\frac{d\phi}{dt} = \pi r^2 B \omega \sin \omega t$$

$$\text{given } \left| \frac{d\phi}{dt} \right| = 15.4 \times 10^{-3} \text{ V}$$

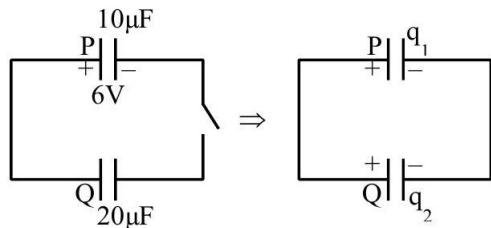
$$\therefore 15.4 \times 10^{-3} = \pi r^2 B \omega \sin(\omega t)$$

$$\Rightarrow r = \sqrt{\frac{15.4 \times 10^{-3}}{3.14 \times 0.5 \times 100 \times \frac{1}{2}}} = 14 \text{ mm}$$

5. Wavelength of light in water is 540 nm. Refractive index of water is $4/3$. Find wavelength of light in glass ($\mu = 3/2$) :
 (1) 480 nm (2) 240 nm (3) 360 nm (4) 630 nm

Ans. [1]

Sol. $\Rightarrow \lambda \propto \frac{1}{\mu}$


$$\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{\mu_2}{\mu_1} = \frac{3/2}{4/3} = \frac{9}{8}$$

$$\lambda_2 = \frac{8}{9} \times 540 = 480 \text{ nm}$$

6. A capacitor " P " of capacitance 10×10^{-6} F is charged to 6 Volts and is now connected to another capacitor Q of capacitance 20×10^{-6} F (Q has no initial charge). The final charge on Q is $\alpha \times 10^{-5}$ C. Find α .

Ans. [4]

Sol. Charge will be distributed in ratio of capacitors

$$\frac{q_1}{q_2} = \frac{1}{2} \text{ and } q_1 + q_2 = 60$$

$$3q_1 = 60$$

$$q_1 = 20 \mu\text{C}$$

$$q_2 = 40 \mu\text{C} = 4 \times 10^{-5} \text{ C}$$

7. $I = 4 \times 10^{14}$ W / m² then find amplitude of magnetic field of laser Beam :

(1) 2.87 T (2) 1.83 T (3) 3.86 T (4) 4.78 T

Ans. [2]

Sol. $I = \left(\frac{B^2}{2\mu_0} \cdot C \right) = 4 \times 10^{14}$

$$B^2 = \frac{2\mu_0}{C} \times 4 \times 10^{14}$$

$$B^2 = \frac{2 \times 4\pi \times 10^{-7} \times 4 \times 10^{14}}{3 \times 10^8}$$

$$B = 1.83 \text{ T}$$

8. **Statement-1 :** Work done by \vec{F} from \vec{r}_1 to \vec{r}_2 is given as $W = -\int_{r_1}^{r_2} \vec{F} \cdot d\vec{r}$, if \vec{F} is conservative.

Statement-2 : There are infinite ways through which we can go from \vec{r}_1 to \vec{r}_2 and work done for each case will be different for conservative force.

- (1) Statement-1 is True, Statement-2 is True ; Statement-2 is correct explanation of Statement-1.
- (2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT correct explanation of Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 and Statement-2 both are False.

Ans. [4]

Sol. Theoretical

9. For non parallax in concave mirror, what should be the position of object from the pole :

- (1) Beyond centre of curvature only
- (2) Between centre of curvature and focus only
- (3) Between focus and pole only
- (4) Beyond focus

Ans. [4]

Sol. For non-parallax, image should be real.
 \therefore Object must be kept beyond focus.

10. 3 identical bubbles each have same charge q . They combine to form one bubble. Find $\frac{V_i}{V_f}$?

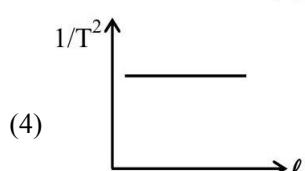
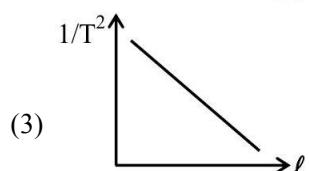
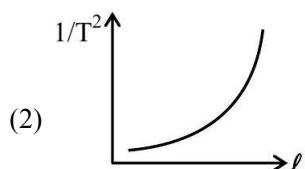
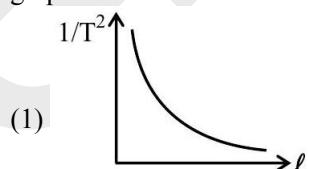
$$(1) \frac{1}{3^{2/3}}$$

$$(2) \frac{3^{2/3}}{1}$$

$$(3) \frac{1}{2^{2/3}}$$

$$(4) 3^{1/3}$$

Ans. [1]





Sol. Using volume conservation

$$3 \left(\frac{4}{3} \pi r^3 \right) = \left(\frac{4}{3} \pi R^3 \right)$$

$$R = 3^{1/3} r$$

$$\frac{V_i}{V_f} = \frac{\frac{kq}{r}}{\frac{k3q}{R}} = \frac{R}{3r} = \frac{3^{1/3}r}{3r} = \frac{1}{3^{2/3}}$$

11. In simple pendulum experiment gravity (g) is determined by its time period (T). Which of the following graph is correct?

Ans. [1]

Sol. $T = 2\pi \sqrt{\frac{\ell}{g}}$

$T^2 = \frac{4\pi^2 \ell}{g}$

$\frac{1}{T^2} = \left(\frac{g}{4\pi^2 \ell} \right)$

12. An ideal gas at pressure 2×10^5 Pa, temperature 27°C has volume 60 cm^3 . If volume of same gas is 20 cm^3 & temperature is 77°C , find out pressure at this state. :

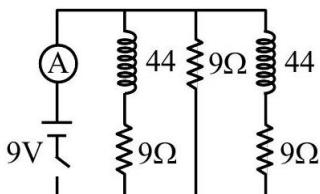
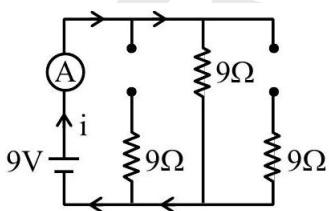
(1) 7×10^5 Pa

(2) 6×10^5 Pa

(3) 3×10^5 Pa

(4) 5×10^5 Pa

Ans. [1]



Sol. $PV = nRT$

$$\frac{P_1 V_1}{RT_1} = \frac{P_2 V_2}{RT_2}$$

$$\frac{2 \times 10^5 \times 60}{R \times 300} = \frac{P_2 \times 20}{R \times 350}$$

$P_2 = 7 \times 10^5 \text{ Pa}$

13. In the figure shown below switch S is closed at $t = 0$, find reading of ideal ammeter (in Amp.) just after S is closed.

Ans. [1]
Sol.

$\text{at } t = 0 \text{ all inductors act as open circuit } i = \frac{9}{9} = 1 \text{ A}$

14. Transmission line having resistance 2Ω and power delivered is 1000 W . When potential difference of 250 volts is applied, find efficiency of transmission line.

(1) 94%

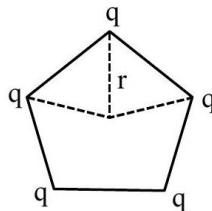
(2) 96.9%

(3) 100%

(4) 91%

Ans. [2]

Sol. Current in wire : $I = \frac{1000}{250} = 4 \text{ Amp}$


Heat loss = $I^2 R = 32 \text{ W}$

Power input = 1032 W

$$\% \eta = \frac{\text{Power output}}{\text{Power input}}$$

$$\% \eta = \frac{1000}{1032} = 96.89\%$$

15. Five positive charges each having charge q are placed at the vertices of a pentagon as shown in the figure. The electric potential (V) & the electric field (\vec{E}) at the centre of the pentagon due to the 5 positive charges are :

(1) $V = \frac{5q}{4\pi\epsilon_0 r}, E = \frac{5q}{4\pi\epsilon_0 r^2}$

(3) $V = 0, E = \frac{5q}{4\pi\epsilon_0 r^2}$

(2) $V = \frac{5q}{4\pi\epsilon_0 r}, E = 0$

(4) $V = \frac{5q}{4\pi\epsilon_0 r}, E = \frac{q}{4\pi\epsilon_0 r^2}$

Ans. [2]

Sol.

16. In case of capillary action if surface tension of liquid, radius of capillary and density of liquid decreases by 1% then percentage change in height of liquid level inside capillary :

(1) 1% increase

(2) 1% decrease

(3) 2% increase

(4) 2% decrease

Ans. [1]

Sol. $h = \frac{2 T \cos \theta}{\rho g r}$

$$\frac{dh}{h} = \frac{dT}{T} - \frac{d\rho}{\rho} - \frac{dr}{r}$$

$$\frac{dh}{h} \% = -1\% + 1\% + 1\% = 1\%$$

1 % increase

17. In an open organ pipe 3rd and 6th harmonic frequency differ by 3200 Hz. Find the length of organ pipe. (Speed of sound = 320 m/s)

Ans. [15]

Sol. $f = n \frac{V_0}{2L}$

$$\frac{6V_0}{2L} - \frac{3V_0}{2L} = 3200$$

$$\frac{3 \times 320}{2L} = 3200$$

$$L = \frac{3}{20} \text{ m}$$

$$L = \frac{3}{20} \times 100 \text{ cm} = 15 \text{ cm}$$

18. A metal has work function $\phi = 110 \times 10^{-20} \text{ J}$ when exposed with monochromatic light maximum kinetic energy of photoelectrons is found to be zero. Find angular frequency of incident light. ($h = 6.63 \times 10^{-34} \text{ Js}$)

(1) 1.04×10^{16} (2) 1.04×10^{18} (3) 1.66×10^{17} (4) 1.66×10^{18}

Ans. [1]

Sol. $\omega = 2\pi f$

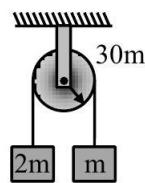
$$hf - \phi = k_{\max}$$

$$f = \frac{\phi}{h} = \frac{110 \times 10^{-20}}{6.63 \times 10^{-34}} = 1.66 \times 10^{15}$$

$$\omega = 2\pi f = 1.04 \times 10^{16} \text{ rad/sec}$$

19. For single slit diffraction :

(A) If we increase λ , keeping slit width constant, width of central maxima increases.
 (B) If we increase λ , keeping slit width constant, width of central maxima decreases.
 (C) If we keep λ same and decreases slit width, the width of central maxima increases
 (D) If we keep λ same and decreases slit width the width of central maxima decreases
 (E) If we increases λ by keeping slit width same, intensity of central maxima increases


Choose the correct option:

(1) A, C only (2) B, D & E only (3) A, C & E only (4) A, D only

Ans. [1]

Sol. Width of central maxima = $\frac{2\lambda D}{a}$

20. A pulley has mass 30 m. There are two blocks of masses m and 2 m. Find speed of 2 m when it descends by distance 3.6 meter. ($g = 10 \text{ m/s}^2$)

(1) -2 m/s (2) 4 m/s (3) 8 m/s (4) 2 m/s

Ans. [4]
Sol. Using energy conservation

$$2mgh - mgh = \frac{1}{2}mv^2 + \frac{1}{2}2mv^2 + \frac{1}{2}\frac{30mR^2}{2} \times \frac{v^2}{R^2} mgh = 9mv^2$$

$$v = \sqrt{\frac{gh}{9}} = \sqrt{\frac{3.6 \times 10}{9}} = \sqrt{4} = 2 \text{ m/s}$$

21. A tube carries 1.6 A current has length 2 m & cross section area = 0.2 mm². If potential difference of 2 V is applied and no. of electrons/volume is 5×10^{28} , mobility of electron is $\alpha \times 10^{-3}$ find α :

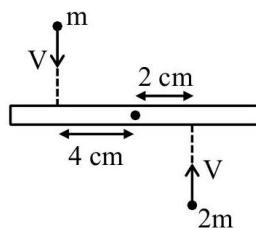
Ans. [1]
Sol. $i = neAV_d = neA\mu E$

$$\mu = \frac{i}{neAE} = \frac{1.6}{5 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.2 \times 10^{-6} \times (2/2)} = 1 \times 10^{-3}$$

22. **Statement-1 :** Time period of revolution of satellite around earth depends on density of earth.

Statement-2 : Time period of revolution of satellite just above the surface of earth is given by

$$2\pi \sqrt{\frac{R_e}{g}} \quad (R_e = \text{Radius of earth})$$


- (1) Statement 1 & 2 both are correct & statement 1 is correct explanation
- (2) Statement 1 & 2 both are correct & statement 1 is not correct explanation
- (3) Statement is true Statement 2 is false
- (4) Statement is false Statement 2 is true

Ans. [1]
Sol. Both are correct & explanation

$$T = 2\pi \sqrt{\frac{R_e}{g}} = 2\pi \sqrt{\frac{R_e}{\frac{4}{3}\pi G\rho R_e}} = 2\pi \sqrt{\frac{3}{4\pi G\rho}}$$

$$T \propto \frac{1}{\sqrt{\rho}}$$

23. Mass of rod is 20 m. If both particles stick with rod after collision than find V/ω ? Here ω is angular velocity of rod after collision. Length of rod is 12 cm :

(1) 64

(2) 66

(3) 33

 (4) $\sqrt{88}$

Ans. [3]
Sol. Using angular momentum conservation about COM of rod :

$$L_i = L_f$$

$$m \times V \times 4 + 2m \times V \times 2 = \left(\frac{20m(12)^2}{12} + m \times 4^2 + 2m \times 2^2 \right) \omega$$

$$8mV = (240m + 24m)\omega$$

$$8V = 264 \omega$$

$$\frac{V}{\omega} = 33$$

24. There are 2 different gases in 2 different containers A and B. Gas A has temperature 'T' and pressure 'P' and number of molecules per unit volume in Gas A is N. Gas B has temperature 'T' and pressure 'P' and number of molecules per unit volume is N. Mass of gas A is 4 times of mass of gas 'B' and size of molecules of gas A is half the size of molecules of gas 'B'. If collision frequency of B is 32×10^8 / sec . Find collision frequency of A :

(1) 16×10^8 / sec

(2) 4×10^8 / sec

(3) 2×10^8 / sec

(4) 8×10^8 / sec

Ans. [2]

Sol. Collision frequency (z) = $\sqrt{\frac{8RT}{\pi M}} (\sqrt{2\pi d^2 N})$

$$\frac{Z_A}{Z_B} = \frac{\left(\frac{d}{2}\right)^2 \frac{N}{\sqrt{4M}}}{\left(\frac{d^2 N}{\sqrt{M}}\right)} \Rightarrow Z_A = Z_B \times \frac{1}{8}$$

$$= 32 \times 10^8 \times \frac{1}{8}$$

$$= 4 \times 10^8 / \text{sec}$$

25. **Statement-1:** Total KE of system can be written as sum of KE of individual particles from ground frame.
Statement-2: Total KE of system can be written as KE of center of mass +KE of individual particles in C.M. frame

(1) statement-1 is true statement-2 is false

(2) statement-1 is false statement-2 is true

(3) Both statement are false.

(4) Both statement are true.

Ans. [4]

Sol. $KE_{\text{system}} = KE_{\text{cm}} + KE_{\text{inc-frame}}$

CAREER POINT

JEE Main Online Exam 2026

Memory Based Questions & Solution

22st January 2026 | Evening

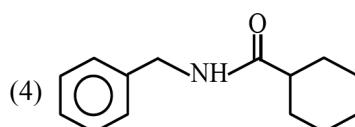
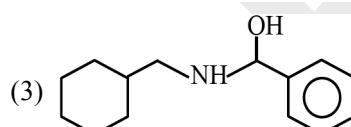
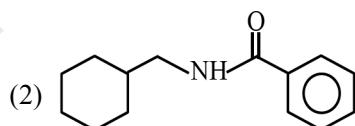
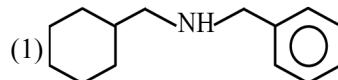
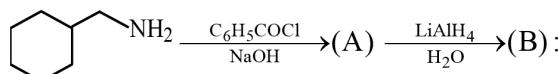
CHEMISTRY

1. Which of the following are correct ?

- (A) Hydrated salt can be primary standard.
- (B) Primary standard should not react with air.
- (C) Primary standard should react instantaneously and stoichiometrically.
- (D) Primary standard should not be water soluble.
- (E) Primary standard should not be lower mass.

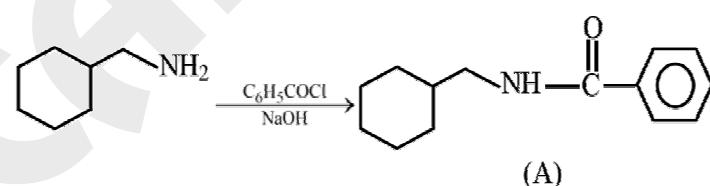
(1) A, B, C, E

(2) C, D, E

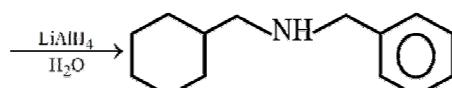





(3) A, B, E

(4) A, B, C

Ans. [3]


Sol. Refer theory.

2. In the given reaction find final product (B)



Ans. [1]

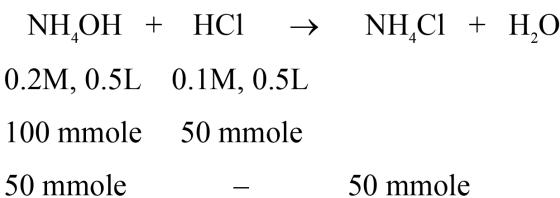
Sol.

(A)

(B)

3. Which of the following buffer solution will have a pH of 9.25. (Given that pK_b of NH_3 : 4.75)

- (1) 0.2M $\text{NH}_4\text{OH}(0.4\ell)$ + 0.1M $\text{HCl}(1\ell)$
- (2) 0.4M $\text{NH}_4\text{OH}(1\ell)$ + 0.1M $\text{HCl}(1\ell)$
- (3) 0.5M $\text{NH}_4\text{OH}(0.5\ell)$ + 0.2M $\text{HCl}(0.5\ell)$
- (4) 0.2M $\text{NH}_4\text{OH}(0.5\ell)$ + 0.1M $\text{HCl}(0.5\ell)$

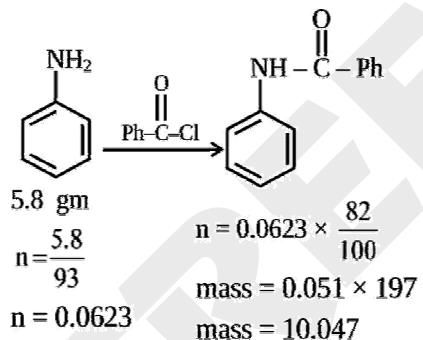

Ans. [4]

Sol. $\text{pOH} = \text{pK}_b + \log \frac{\text{Salt}}{\text{Base}}$

$$4.75 = 4.75 + \log \frac{\text{Salt}}{\text{Base}}$$

Milimoles of [Salt] = milimoles of [Base]

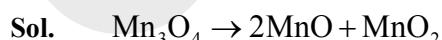
Option (4) :



Milimoles of NH_4OH = milimoles of NH_4Cl

4. Find the mass of product obtained by benzylation of 5.8 gm aniline, if reaction yield is 82%.

Ans. [10.05]


Sol.

5. How many of the following are mixed oxides.

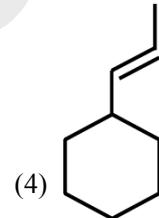
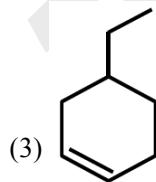
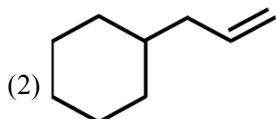
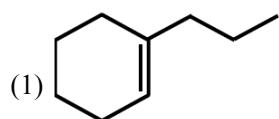
Ans. [3]

Transition of 2nd Balmer line

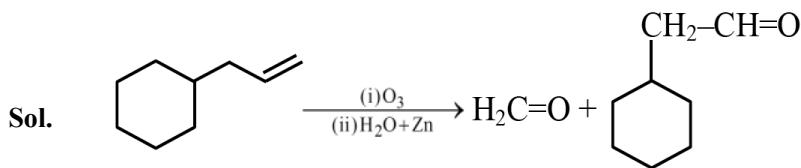
$$n_1 = 2; n_2 = 4$$

$$\Delta E = 13.6(1)^2 \left[\frac{1}{2^2} - \frac{1}{4^2} \right] \quad \dots \text{(ii)}$$

Divide Eq. (ii) by eq. (i)





$$\frac{\Delta E}{x} = \frac{\frac{1}{4} - \frac{1}{16}}{\frac{1}{4} - \frac{1}{9}}$$

$$\frac{\Delta E}{x} = \frac{\frac{3}{16}}{\frac{5}{36}}$$


$$\frac{\Delta E}{x} = \frac{27}{20}$$

$$\Delta E = 1.35x$$

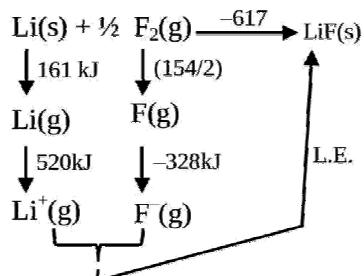
9. An alkene on reductive ozonolysis gives methanal as one of the product it's structure is :

Ans. [2]

10. Find magnitude of lattice energy of LiF (in kJ / mol)

Given :

Enthalpy of sublimation of Li(s) = 161 kJ / mol


Ionisation enthalpy of Li(g) = 520 kJ / mol

Bond Enthalpy of F₂(g) = 154 kJ / mol

Electron gain enthalpy of F(g) = -328 kJ / mol

Enthalpy of formation of LiF(s) = -617 kJ / mol

Ans. [1047]

Sol.

$$-617 = 161 + 520 + \frac{154}{2} - 328 + (\text{L.E.})$$

$$\text{L.E.} = -1047 \text{ kJ/mol}$$

11. $A \rightarrow B; E_{a_1}$
 $C \rightarrow D; E_{a_2}$

$$\log_{10} K \text{ for first reaction} = 14.34 - \frac{1.5 \times 10^4}{T}$$

E_{a_2} is $1/5^{\text{th}}$ of E_{a_1} . Then the value of E_{a_2} is (in kJ/mol) :

Ans. [57 kJ]

$$\frac{E_{a_1}}{2.303R} = 1.5 \times 10^4$$

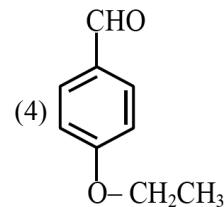
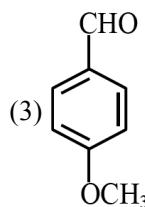
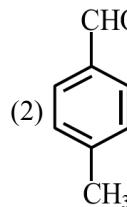
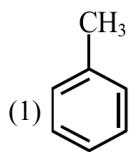
$$E_{a_1} = 1.5 \times 10^4 \times 2.303 \times 8.314$$

$$E_{a_1} = 28.7207 \times 10^4 \text{ J}$$

$$E_{a_1} = 287.207 \text{ kJ}$$

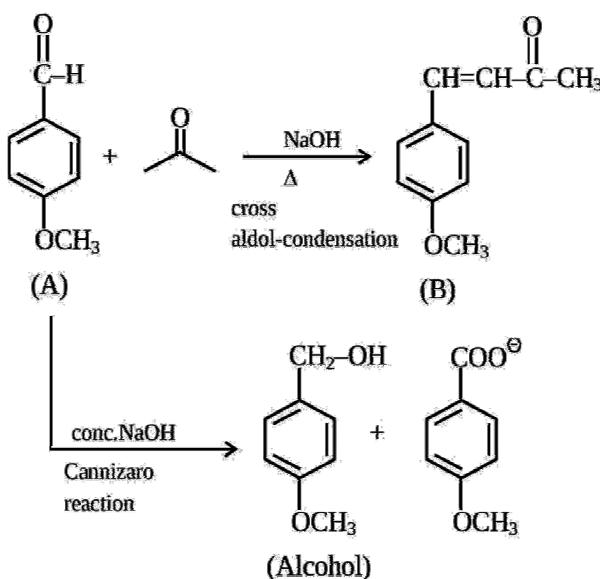
$$E_{a_2} = \frac{E_{a_1}}{5} = \frac{287.207}{5} = 57.44 \text{ kJ}$$

12. **Statement-I :** BCl_3 and AlCl_3 are covalent compounds.





Statement-II : BCl_3 on reaction with water produces $[\text{B}(\text{OH})_4]^{-1}$ ion and $[\text{B}(\text{H}_2\text{O})_6]^{3+}$ ions.

- (1) Statement-I is correct and Statement-II is incorrect.
- (2) Statement-I and Statement-II both are correct.
- (3) Statement-I is incorrect while Statement-II is correct.
- (4) Both Statements are incorrect.

Ans. [1]


Sol. Both BCl_3 and AlCl_3 are covalent compounds. BCl_3 on reaction with water gives H_3BO_3 and HCl .

13. Organic compound A with molecular formula $\text{C}_8\text{H}_8\text{O}_2$ gives cross aldol condensation reaction with acetone and A also react with conc. NaOH and produce alcohol as one of the product, identify structure of A :

Ans. [3]

Sol.

14. Consider the following statement(s) about Arrhenius equation:

- (A) The fraction of particles having energy less than activation energy is $e^{-\frac{E_a}{RT}}$.
- (B) Reaction with lower activation energy is faster.
- (C) On increasing temperature by 10°C , rate of reaction doubles.
- (D) Graph of $\log K \text{ v/s } \frac{1}{T}$ is a straight line with slope $\frac{-E_a}{R}$.

Select correct statement:

(1) A and B are correct
(2) B and D are correct
(3) B and C are correct
(4) C and D are correct

Ans. [3]

Sol. Fact based.

15. Correct statement for the paramagnetic complex $[\text{Ni}(\text{PPh}_3)_2\text{Cl}_2]$.

- (1) CFSE value is $-0.2\Delta_0$
- (2) It is white in colour
- (3) It has magnetic moment 2.84 B.M.
- (4) It has two geometrical isomers

Ans. [3]

Sol. $\left[\text{Ni}(\text{PPh}_3)_2\text{Cl}_2 \right]$ is tetrahedral and paramagnetic in nature having two unpaired electrons.

16. 100 g of 98% by weight H_2SO_4 is mixed with 100 gm 49% by weight H_2SO_4 . Mole fraction of H_2SO_4 in the final solution is :

Ans. [4]

Sol. 100 g, 98% by weight has 98 gH₂SO₄ and 2 gH₂O (water).
100 g, 49% by weight has 49 gH₂SO₄ and 51 gH₂O

Total wt. of H_2SO_4 = 49 + 98 = 147 gm.

Moles of H_2SO_4 = 1.5 mole

Total mass of water = 53gm.

Moles of water = 2.944

$$\text{Moles fraction of H}_2\text{SO}_4 = \frac{1.5}{1.5 + 2.944} = 0.33.$$

17. When 1 gm of compound (X) is subjected to Kjeldahl's method for estimation of nitrogen, 15 mL, 1M H_2SO_4 was neutralized by ammonia evolved. The % of nitrogen in compound (X) is :

Ans. [3]

Sol. Eq. of H_2SO_4 = eq. of Ammonia

$$\Rightarrow \frac{15 \times 1 \times 2}{1000} = \text{moles of ammonia} \times 1$$

⇒ Moles of ammonia = moles of ' N '

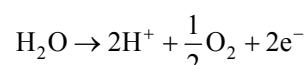
$$\Rightarrow \text{Weight of nitrogen} = \frac{15 \times 1 \times 2}{1000} \times 14 = 0.42$$

$$\% \text{ weight of 'N'} = \frac{0.42}{1} \times 100 = 42\%$$

18. Find pH above which O_2 will be evolved at anode :

$$E^\circ_{M^{+2}(aq)/M(s)} = 0.997 \text{ V}, E^\circ_{O_2(g)/H_2O(\ell)} = +1.23 \text{ V}$$

$$\text{Pt(s)} \big| \text{O}_2(\text{g}) \big| \text{H}^+(\text{aq}) \parallel \text{M}^{+2} \big| \text{M}$$


(Given that $2.303 \frac{RT}{E} = 0.059$)

Ans. [4]

Sol. For spontaneity $E_{\text{cell}} > 0$

At limiting condition :

$$E_{Oxi} \text{ (anode)} = -E_{Red} \text{ (cathode)}$$

$$E = E^\circ - \frac{0.059}{2} \log \left[\frac{[H^+]^2 \times P_{O_2}^{1/2}}{1} \right]$$

$$-0.997 = -1.23 + 0.059 \times \text{pH}$$

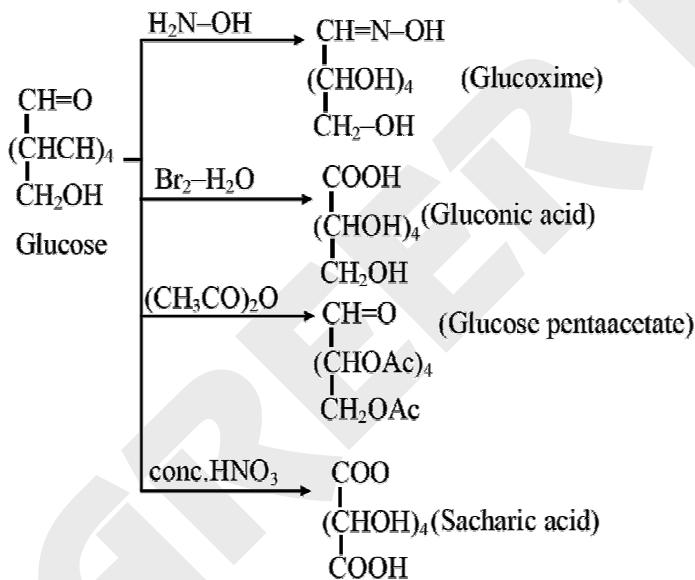
$$\text{pH} = 3.94$$

$$\text{pH} \approx 4$$

19. Find correct matching of reaction of Glucose with given reagent in column-I and product formed in column-II :

Column-I		Column-II	
(P)	Hydroxylamine	(1)	Gluconic acid
(Q)	Br_2 -water	(2)	Glucose pentaacetate
(R)	Excess of acetic anhydride	(3)	Sacharic acid
(S)	Conc. HNO_3	(4)	Glucose-oxime

$$(1) P \rightarrow 4; Q \rightarrow 1; R \rightarrow 2; S \rightarrow 3$$


$$(2) P \rightarrow 4; Q \rightarrow 3; R \rightarrow 2; S \rightarrow 1$$

$$(3) P \rightarrow 1; Q \rightarrow 3; R \rightarrow 4; S \rightarrow 2$$

$$(4) P \rightarrow 3; Q \rightarrow 1; R \rightarrow 4; S \rightarrow 2$$

Ans. [1]

Sol.

20. 36 g of A react with 56 g of B to form AB_2 according to given reaction :

Which of the following is correct :

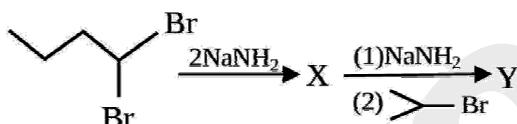
(Given : Molar mass of A = 60 g / mol, Molar mass of B = 80 g / mol)

(1) Molecular weight of AB_2 is 140. (2) A is limiting reagent.
 (3) 15 gm of A remains unreacted. (4) Weight of AB_2 is 132 gm.

Ans. [3]

Mole	$\frac{36}{60}$	$\frac{56}{80}$
	0.6 mole	0.7 mole
	0.25 mole	– 0.35 mole

(A) Molecular wt. of AB_2 is


$$60 + 2 \times 80 = 220 \text{ g/mol}$$

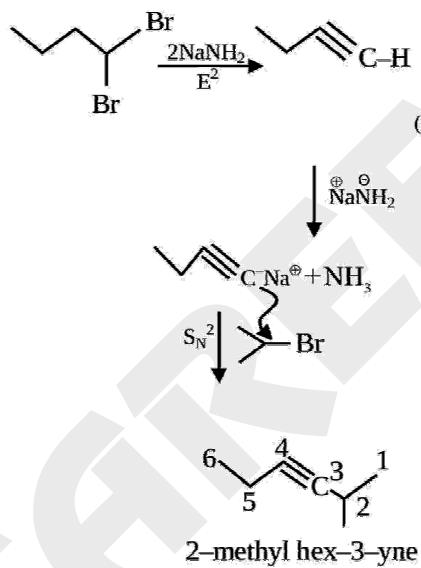
(B) LR is AB .

(C) Wt. of A remaining $= 0.25 \times 60 = 15 \text{ g}$

(D) wt. of AB_2 formed $= 0.35 \times 220 = 77 \text{ gm}$.

21. Write correct IUPAC name in the final product formed in the given reaction :

(1) Isopropyl but-1-yne


(2) 2-methyl hex-2-yne

(3) 5-methyl hex-2-yne

(4) 2-methyl hex-3-yne

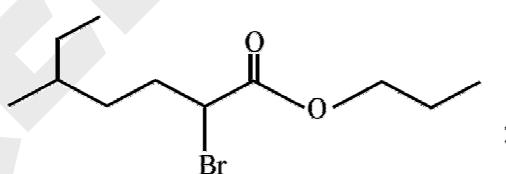
Ans. [4]

Sol.

22. **Statement-I :** Correct order of ionization energy of C, N, O and F is F > N > O > C

Statement-II : The correct order of electron gain enthalpy (magnitude only) for group 16 elements is S > Se > Te > O :

- (1) Statement-I is correct and Statement-II is incorrect.
- (2) Statement-I and Statement II both are correct.
- (3) Statement-I is incorrect while Statement-II is correct.
- (4) Both Statements are incorrect.

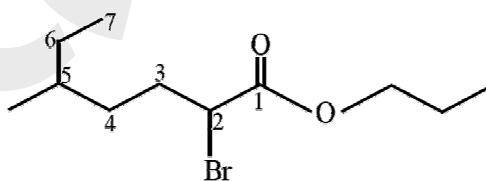

Ans. [2]**Sol.** $IE_1 : F > N > O > C$ Magnitude of electron gain enthalpy order is $S > Se > Te > O$ **23.** **Statement-I :** First ionization energy of Cr is lower than that of Mn.**Statement-II :** 2nd and 3rd ionization energy of Cr is higher than 2nd and 3rd ionization energy of Mn.

(1) Statement I is correct and statement II is incorrect.

(2) Both statements I and II are correct.

(3) Statement I is incorrect and statement II is correct.

(4) Both statements I and II are incorrect.


Ans. [1]**Sol.** $IE_1(Cr) = 653 \text{ kJ/mol}$ $IE_2(Cr) = 1592 \text{ kJ/mol}$ $IE_3(Cr) = 2990 \text{ kJ/mol}$ $IE_1(Mn) = 717 \text{ kJ/mol}$ $IE_2(Mn) = 1509 \text{ kJ/mol}$ $IE_3(Mn) = 3260 \text{ kJ/mol}$ **24.** 'X' is the most electronegative element and Y is the least electronegative element in the group 15 elements N, P, As and Sb(1) X_2O_3 is acidic and Y_2O_3 is amphoteric (2) X_2O_3 is basic and Y_2O_3 is amphoteric(3) X_2O_3 is acidic and Y_2O_3 is basic (4) X_2O_3 is amphoteric and Y_2O_3 is acidic**Ans.** [1]**Sol.** Electronegativity N(3.0), P(2.1), As(2.0), Sb(1.9), Bi(1.9)Sb₂O₃ is amphoteric while N₂O₃ is acidic.**25.** Correct IUPAC name of given compound is

(1) 2-Bromo-5-Ethylhexanoate

(3) Propyl-2-Bromo-5-Ethylhexanoate

(2) Propyl-2-Bromo-5-Methylheptanoate

(4) 2-Bromo-5-Methylpropylheptanoate

Ans. [2]**Sol.**

Propyl-2-Bromo-5-Methylheptanoate

CAREER POINT

JEE Main Online Exam 2026

Memory Based Questions & Solution 22st January 2026 | Evening

MATHEMATICS

1. $x - ny + z = 6$

$$x - (n-2)y + (n+1)z = 8$$

$$(n-1)y + z = 1$$

Let n = numbers on the die when rolled then P (probability when system of equations has unique solution)

$= \frac{k}{6}$, then the sum of values of k and all possible values of n is

(1) 20

(2) 21

(3) 22

(4) 24

Ans. [4]

Sol. $x - ny + z = 6$

$$x - (n-2)y + (n+1)z = 8$$

$$(n-1)y + z = 1$$

$$\begin{vmatrix} 1 & -n & 1 \\ 1 & -(n-2) & n+1 \\ 0 & n-1 & 1 \end{vmatrix} = 0$$

$\Rightarrow n = 2$ or $n = -1$ (rejected)

for unique solution $n = 1, 3, 4, 5, 6$

Now

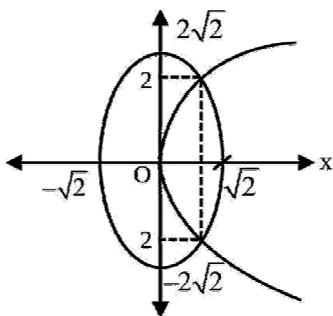
P (probability when system of equations has unique solution) $= \frac{5}{6}$

So $k = 5$

Now required sum $= 5 + (1 + 3 + 4 + 5 + 6) = 24$

2. Area enclosed by $4x^2 + y^2 \leq 8$ and $y^2 \leq 4x$ (in sq. units)

(1) $\left(\pi + \frac{4}{3}\right)$


(2) $\pi - \frac{4}{3}$

(3) $\pi + \frac{2}{3}$

(4) $\pi - \frac{2}{3}$

Ans. [3]

Sol.

$$\begin{aligned}
 A &= \int_0^1 2\sqrt{x} dx + 2 \int_1^{\sqrt{2}} \sqrt{8 - 4x^2} dx \\
 &= \frac{8}{3} \left(x^{\frac{3}{2}} \right) \Big|_0^1 + 4 \int_1^{\sqrt{2}} \sqrt{2 - x^2} dx \\
 &= \frac{8}{3} + 4 \times \frac{1}{2} \left[x \sqrt{2 - x^2} + 2 \sin^{-1} \left(\frac{x}{\sqrt{2}} \right) \right] \Big|_1^{\sqrt{2}} \\
 &= \frac{8}{3} + 2 \left[2 \times \frac{\pi}{2} - 1 - 2 \times \frac{\pi}{4} \right] \\
 &= \frac{8}{3} + 2\pi - 2 - \pi = \pi + \frac{2}{3}
 \end{aligned}$$

Sq. unit

3. $\alpha = \int_0^{64} \left(x^{\frac{1}{3}} + \left[x^{\frac{1}{3}} \right] \right) dx$, where $[.]$ denotes greatest integer function. Find $\frac{1}{\pi} \int_0^{\alpha\pi} \frac{\sin^2 \theta}{\sin^6 \theta + \cos^6 \theta} d\theta$

(1) 160 (2) 174 (3) 180 (4) 183

Ans.

$$\text{Sol.} \quad \therefore \int_0^{64} x^{\frac{1}{3}} dx = \frac{3}{4} \left[x^{\frac{4}{3}} \right]_0^{64} = 192 \quad \&$$

$$\int_0^{64} \left[x^{1/3} \right] dx = \int_0^1 \left[x^{1/3} \right] dx + \int_1^8 \left[x^{1/3} \right] dx + \int_8^{27} \left[x^{1/3} \right] dx + \int_{27}^{64} \left[x^{1/3} \right] dx = 156$$

$$\text{So } \alpha = 156 + 192 = 348$$

$$\text{Now } E = \frac{1}{\pi} \int_0^{348\pi} \frac{\sin^2 \theta}{\sin^6 \theta + \cos^6 \theta} d\theta$$

$$= \frac{348}{\pi} \int_0^\pi \frac{\sin^2 \theta}{\sin^6 \theta + \cos^6 \theta} d\theta$$

$$\Rightarrow E = \frac{348 \cdot 2}{\pi} \int_0^{\pi/2} \frac{d\theta}{\sin^6 \theta + \cos^6 \theta}$$

$$\text{Let } J = \int_0^{\pi/2} \frac{\sin^2 \theta}{\sin^6 \theta + \cos^6 \theta} d\theta$$

.....(1)

Applying King

$$J = \int_0^{\pi/2} \frac{\cos^2 \theta}{\sin^6 \theta + \cos^6 \theta} d\theta \quad \dots \dots (2)$$

$$\begin{aligned}
 \text{Now } 2J &= \int_0^{\pi/2} \frac{1}{\sin^6\theta + \cos^6\theta} d\theta && (\text{add (1) \& (2)}) \\
 &= \int_0^{\pi/2} \frac{\sec^6\theta}{\tan^6\theta + 1} d\theta \\
 &= \int_0^{\infty} \frac{(1+\lambda^2)^2}{\lambda^4 - \lambda^2 + 1} d\lambda \\
 &= \int_0^{\infty} \frac{1 + \frac{1}{\lambda^2}}{\lambda^2 - 1 + \frac{1}{\lambda^2}} d\lambda \\
 &= \frac{\pi}{2} \\
 \Rightarrow J &= \frac{\pi}{4} \\
 \Rightarrow E &= \frac{348 \cdot 2}{\pi} \times J = 174
 \end{aligned}$$

4. Let the domain of function $f(x) = \log_3 \left(\log_5 \left(7 - \log_2 (x^2 - 10x + 85) \right) \right) + \sin^{-1} \left(\frac{|3x - 7|}{|17 - x|} \right)$ be $(\alpha, \beta]$ then value of $\alpha + \beta$ is equal to :

Ans. [9]

Sol. Let $x^2 - 10x + 85 = \lambda$
 \therefore Domain for first term

$\lambda > 0$: ... (1)

$$7 - \log_2 \lambda > 0 \Rightarrow \lambda < 2^7$$

$$\log_5(7 - \log_2 \lambda) > 0 \Rightarrow \lambda < 2^6 \quad \dots(3)$$

∴ from (1), (2) & (3)

$$0 < \lambda < 2^6$$

$$0 < x^2 - 10x + 85 < 64$$

$$\Rightarrow x \in (3, 7) \quad \dots(A)$$

& domain for second term $-1 \leq \frac{3x-7}{x-17} \leq 1$

$$\Rightarrow x \in [-5, 6] \quad \dots \text{(B)}$$

From (A) & (B), domain of function will be (3,6]

$$\Rightarrow \alpha = 3, \beta = 6$$

$$\Rightarrow \alpha + \beta = 9$$

5. Let α, β be the roots of quadratic equation $12x^2 - 20x + 3\lambda = 0, \lambda \in \mathbb{Z}$. If $\frac{1}{2} \leq |\beta - \alpha| \leq \frac{3}{2}$, then the sum of all the possible values of λ is :

(1) 2 (2) 3 (3) 6 (4) 5

Ans. [2]

$$\text{Sol. } \frac{1}{2} \leq |\alpha - \beta| \leq \frac{3}{2}$$

$$\frac{1}{4} \leq |\alpha - \beta|^2 \leq \frac{9}{4}$$

$$\frac{1}{4} \leq (\alpha + \beta)^2 - 4\alpha\beta \leq \frac{9}{4}$$

$$\frac{1}{4} \leq \frac{25}{9} - 4 \times \frac{\lambda}{4} \leq \frac{9}{4}$$

$$-\frac{91}{36} \leq -\lambda \leq \frac{-19}{36}$$

$$\frac{19}{36} \leq \lambda \leq \frac{91}{36}$$

$$\lambda = 1, 2$$

$$\text{Sum} = 3$$

6. If $\sin(\alpha - \beta) = \frac{3}{8}$, $\cos(\alpha + \beta) = \frac{-1}{10}$ and $\tan 2\alpha = \frac{3(1 - r\sqrt{5})}{\sqrt{11}(s + \sqrt{5})}$ then $r + s = ?$

(Given: $0 < (\alpha - \beta) < \frac{\pi}{2}$ & $\frac{\pi}{2} < \alpha + \beta < \pi$)

(1) 10

(2) 14

(3) 18

(4) 20

Ans. [4]

$$\text{Sol. } \tan 2\alpha = \tan [(\alpha + \beta) + (\alpha - \beta)]$$

$$\tan 2\alpha = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \cdot \tan(\alpha - \beta)}$$

$$\tan 2\alpha = \frac{\left(-\sqrt{99} + \frac{3}{\sqrt{55}} \right)}{1 - \left(\sqrt{99} \right) \left(\frac{3}{\sqrt{55}} \right)}$$

$$\tan 2\alpha = \frac{-3\sqrt{11} + \frac{3}{\sqrt{5} \times \sqrt{11}}}{1 + \frac{9\sqrt{11}}{\sqrt{5} \times \sqrt{11}}}$$

$$\tan 2\alpha = \frac{3(1 - 11\sqrt{5})}{\sqrt{11}(9 + \sqrt{5})}$$

$$r = 11, s = 9$$

$$r + s = 20$$

7. If complex numbers $z_1, z_2, z_3, \dots, z_n$ satisfying the equation $4z^2 + \bar{z} = 0$, then $\sum_{i=1}^n |z_i|^2 =$

(1) $\frac{3}{16}$

(2) $\frac{3}{64}$

(3) $\frac{9}{64}$

(4) $\frac{1}{16}$

Ans. [1]

Sol. $4z^2 + \bar{z} = 0$

 Let $z = x + iy$

$$4(x+iy)^2 + x - iy = 0$$

$$4x^2 - 4y^2 + 8xyi + x - iy = 0$$

$$4x^2 - 4y^2 + x = 0 \text{ & } y(8x - 1) = 0$$

$$\Rightarrow y = 0 \text{ or } x = \frac{1}{8}$$

If $y = 0, 4x^2 + x = 0$

$$x = 0, \frac{-1}{4}$$

$$\therefore z_1 = 0 + 0i \quad |z_1|^2 = 0$$

$$z_2 = 0 - \frac{1}{4}i \quad |z_2|^2 = \frac{1}{16}$$

If $x = \frac{1}{8}$,

$$4 \times \frac{1}{64} - 4y^2 + \frac{1}{8} = 0$$

$$\Rightarrow 4y^2 = \frac{3}{16} \Rightarrow y = \pm \frac{\sqrt{3}}{8}$$

$$\therefore z_3 = \frac{1}{8} + \frac{\sqrt{3}}{8}i \quad |z_3|^2 = \frac{1}{64} + \frac{3}{64} = \frac{1}{16}$$

$$z_4 = \frac{1}{8} - \frac{\sqrt{3}}{8}i \quad |z_4|^2 = \frac{1}{64} + \frac{3}{64} = \frac{1}{16}$$

$$\therefore \sum_{i=1}^n |z_i|^2 = 0 + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{3}{16}$$

8. If $\int \frac{\cos y}{1-2\sin y} dy = \int \frac{dx}{16\sqrt{(9\sqrt{x}+x)4+\sqrt{9+\sqrt{x}}}}$ and $f(256) = \frac{\pi}{2}$ and $f(49) = \alpha$, then find $(2\sin \alpha)$

(1) $1 + \frac{3}{2\sqrt{2}}$

(2) $1 - \frac{3}{2\sqrt{2}}$

(3) $1 + \frac{3}{4\sqrt{2}}$

(4) $1 - \frac{3}{4\sqrt{2}}$

Ans. [1]

Sol. $\int \frac{\cos y}{1-2\sin y} dy = \int \frac{dx}{16\sqrt{(9\sqrt{x}+x)4+\sqrt{9+\sqrt{x}}}}$

$$4 + \sqrt{9 + \sqrt{x}} = t$$

$$\frac{1}{2\sqrt{9+\sqrt{x}}} \times \frac{dx}{2\sqrt{x}} = 1dx$$

$$-\frac{1}{2} \ell n |1-2\sin y| = \int \frac{4dt}{16t} + C$$

$$-\frac{1}{2} \ell n |1-2\sin y| = \frac{1}{4} \ell n \left| 4 + \sqrt{9 + \sqrt{x}} \right| + C$$

$$-\frac{1}{2} \ln(2\sin y - 1) = \frac{1}{4} \ln|x + \sqrt{9 + \sqrt{x}}| + C$$

$$\left(2\sqrt{6}, \frac{\pi}{2}\right)$$

$$\frac{1}{4} \ln 9 + C = 0 \quad C = -\frac{1}{4} \ln 9$$

$$(49, \alpha) - \frac{1}{2} \ln(2\sin \alpha - 1) = \frac{1}{4} \ln 8 - \frac{1}{4} \ln 9 = \frac{1}{4} \ln \frac{8}{9}$$

$$-\ln(2\sin \alpha) = \frac{1}{2} \ln \frac{8}{9}$$

$$\ln(2\sin \alpha - 1) = \ln \frac{3}{2\sqrt{2}}$$

$$2\sin -1 = \frac{3}{2\sqrt{2}}$$

$$2\sin \alpha = \frac{3 + 2\sqrt{2}}{2\sqrt{2}}$$

$$= 1 + \frac{3}{2\sqrt{2}}$$

9. If $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is a solution of system of equation $AX = B$ where $A \text{Adj} A = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{pmatrix}$ & $B = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$ then $|x + y + z|$ is

(1) 3

(2) 2

(3) $\frac{3}{2}$

(4) 1

Ans. [2]

Sol. $X = A^{-1} B = \left(\frac{\text{adj} A}{|A|} \right) B$

$$= \pm \frac{1}{10} \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$$

$$= \pm \frac{1}{10} \begin{pmatrix} 20 \\ -10 \\ 10 \end{pmatrix} = \pm \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\therefore |x + y + z| = 2$$

10. If $\lim_{x \rightarrow 0} \frac{e^{(a-1)x} - 2\cos bx + e^{-x}(c-2)}{x \cos x - \ln(1+x)} = 2$, then find $a^2 + b^2 + c^2$

(1) 11

(2) 12

(3) 13

(4) 14

Ans. [3]

Sol.

$$\lim_{x \rightarrow 0} \frac{\left(1 + (a-1)x + \frac{(a-1)^2 x^2}{2!}\right) - 2\left(1 - \frac{b^2 x^2}{2!}\right) + (c-2)\left(1 - x + \frac{x^2}{2!}\right)}{x\left(1 - \frac{x^2}{2!}\right) - \left(x - \frac{x^2}{2} \dots\right)} = 2$$

$$\lim_{x \rightarrow 0} \frac{(1-2+c-2) + x(a-1-c+2) + x^2\left(\frac{(a-1)^2}{2} + b^2 + \left(\frac{c-2}{2}\right)\right)}{\frac{x^2}{2} - \frac{x^3}{2!} + \dots} = 2$$

For which

$$\because c-3=0 \Rightarrow c=3$$

$$\because a-c=-1 \Rightarrow a=2$$

$$\therefore \frac{(a-1)^2}{2} + b^2 + \left(\frac{c-2}{2}\right) = 1 \Rightarrow b^2 = 0$$

$$a^2 + b^2 + c^2 = 4 + 0 + 9 = 13$$

11. Let P, M, Q be the points on $\frac{x+1}{2} = \frac{y+1}{3} = \frac{z+3}{6}$ where M also lies on $\frac{x+1}{2} = \frac{y+1}{3}, z=9$ and $PM = MQ = 7$, then find the sum of co-ordinates of P & Q :

(1) 34

(2) 6

(3) 28

(4) 55

Ans.

[1]

Sol. M is the point of intersection of L_1 & L_2

$$\Rightarrow 2\lambda - 1 = 2\mu - 1, 3\lambda - 1 = 3\mu - 1, 6\lambda - 3 = 9$$

$$\Rightarrow \lambda = 2 = \mu$$

$$\Rightarrow M(3,5,9)$$

Now let point P be $(-2K-1, 3-1, 6K-3)$ on L_2 such that $PM = 7$

$$\Rightarrow \sqrt{(2K-4)^2 + (3K-6)^2 + (6K-12)^2} = 7$$

$$\Rightarrow 49K^2 + 196 - 196K = 49$$

$$\Rightarrow K^2 + 4 - 4K = 1$$

$$\Rightarrow K^2 - 4K + 3 = 0$$

$$\Rightarrow K = 1, 3$$

So points P & Q are $(1,2,3)$ & $(5,8,15)$

So sum of all co-ordinates of P & Q = 34

12. If $A = \{1, 2, 3, \dots, 11\}$ let B is a subset of A such that $n(B) \geq 2$ & the product of all elements in B is even, then the number of such possible sets B is

Ans.

[1979]

Sol. A $\{1, 2, 3, \dots, 11\}$

$\therefore n(B) \geq 2$ & product of all elements in B is even

Case (i) $n(B) = 2 \Rightarrow {}^{11}C_2 - {}^6C_2$

$n(B) = 3 \Rightarrow {}^{11}C_3 - {}^6C_3$

$n(B) = 4 \Rightarrow {}^{11}C_4 - {}^6C_4$

$$n(B) = 5 \Rightarrow {}^{11}C_5 - {}^6C_5$$

$$n(B) = 6 \Rightarrow {}^{11}C_6 - {}^6C_6$$

$$n(B) = 7 \Rightarrow {}^{11}C_7$$

:

$$n(B) = 11 \Rightarrow {}^{11}C_{11}$$

$$\therefore \text{number of set } B \Rightarrow \sum_{r=2}^{11} {}^{11}C_r - \sum_{r=2}^6 {}^6C_r$$

$$= 2^{11} - (12) - (2^6 - 7)$$

$$= 2048 - 64 - 5$$

$$= 1979$$

Alternate sol.

$$\text{Total subsets} = 2^{11}$$

$$\text{No. of subsets having odd terms only} = 2^6$$

$$\text{No. of subsets having one term only \& also having even terms} = 5$$

$$\text{Req. ways} = 2^{11} - 2^6 - 5 = 1979$$

13. $f(x+y) = f(x) \cdot f(y), g(x+y) = g(xy), f(1) = 7, g(1) = 1$. Given $\sum_{x=1}^n \frac{f(x)}{g(x)} = 19607$. Then find the value of n is

Ans. [5]

Sol. $f(x+y) = f(x) \cdot f(y) \Rightarrow f(x) = a^x$
 $(\because f(1) = 7 \Rightarrow a^1 = 7)$

$$\text{So } f(x) = 7^x$$

Now

$$g(x+y) = g(xy) \text{ (put } y=1)$$

$$\Rightarrow g(x+1) = g(x)$$

$$\text{so } g(1) = g(2) = g(3) = \dots = g(n) = 1$$

$$\text{Given } \sum_{x=1}^n \frac{f(x)}{g(x)} = 19607$$

$$\sum_{x=1}^n \frac{7^x}{1} = 19607$$

$$\Rightarrow 7 \left(\frac{7^n - 1}{7 - 1} \right) = 19607$$

$$7^n - 1 = \frac{6}{7} \times 19607$$

$$7^n = 16807 \Rightarrow n = 5$$

16. Let $P(\alpha, \beta)$ be a point on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ if $PS^2 + PS'^2 - PS \cdot PS' = 37$ where S, S' are focii of ellipse, then the value of $(\alpha^2 + \beta^2)$ is

Ans. [13]

Sol. $\because P$ lies on ellipse $\Rightarrow \frac{\alpha^2}{25} + \frac{\beta^2}{9} = 1$

$$\therefore PS + PS' = 2a \Rightarrow PS + PS' = 10$$

$$\therefore (PS)^2 + (PS')^2 - PS'PS' = 37$$

$$(PS + PS')^2 - 3PS \cdot PS' \equiv 37$$

$$100 - 3 \text{ PS. PS}' = 37$$

$$\underline{\underline{3PS}} \cdot \underline{\underline{PS'}} = 63 \Rightarrow \underline{\underline{PS}} \cdot \underline{\underline{1}}$$

$$PG(2, PG(1, \begin{pmatrix} 5 & 4 \\ 0 & 1 \end{pmatrix})$$

∴ FS & FS are $\left(\frac{5 \pm \sqrt{5}}{5}, \alpha \right)$

$$\therefore \underline{\text{PS.PS}'} = 25 - \frac{10}{25} \alpha^2 = 21$$

$$\frac{16}{25}\alpha^2 = 4$$

$$\alpha = \frac{5}{2} \Rightarrow \alpha^2 = \frac{25}{4}$$

$$\therefore \beta^2 = \frac{27}{4}$$

$$\therefore \alpha^2 + \beta^2 = \frac{52}{4} = 13$$

Ans. [1]

$$\text{Sol. } P_n = \sum_{r=0}^n \frac{n C_r (-2)^r}{r+1} = \sum_{r=0}^n \frac{1}{(n+1)} n^{n+1} C_{r+1} (-2)^r$$

$$= \frac{-1}{2(n+1)} \sum_{r=0}^n {}^{n+1}C_{r+1} (-2)^{r+1}$$

$$= \frac{-1}{2(n+1)} \left[(1-2)^{n+1} - 1 \right]$$

$$P_n = \frac{1}{2} \left[1 - (-1)^{n+1} \right]$$

$$2(n+1)^{-\frac{1}{2}} \leq \frac{1}{2n+1}$$

$$r_{2n} = \frac{1}{2(n+1)} \left[1 - (-1)^n \right]$$

$$P_{2n} = \frac{1}{2n+1}$$

$$\begin{aligned}\sum_{n=0}^{\infty} \frac{1}{P_{2n}} &= \sum_{n=1}^{25} (2n+1) \\ &= 3+5+\dots+51 \\ &= \frac{25}{2}[51+3] \\ &= 25 \times 27 = 575\end{aligned}$$

18. If $f(x) = [x]^2 - [x+3] - 3$, $[]$ denotes G.I.F. then

- (1) $f(x) = 0$ has finitely many solutions
- (2) $\int_0^2 f(x) dx = -6$
- (3) $f(x) < 0$ only in $[-1, 3)$
- (4) $f(x) > 0$ only in $(-2, 4)$

Ans. [3]

Sol. (A) $f(x) = 0 \Rightarrow [x] = 3$ or $[x] = -2$
 $\Rightarrow x \in [3, 4) \cup [-2, -1)$
 $\Rightarrow f(x) = 0$ then infinite solutions
 $f(x) = [x]^2 - [x+3] - 3$
 $= [x]^2 - [x] - 6$
 $= ([x]-3)([x]+2)$

(B) $\int_0^2 f(x) dx = \int_0^2 ([x]^2 - [x] - 6) dx$
 $= \int_0^2 ([x]^2 - [x]) dx - 12$
 $= -12$

(C) $f(x) < 0 \Rightarrow ([x]-3)([x]+2) < 0$
 $\Rightarrow -2 < [x] < 3$
 $\Rightarrow -1 \leq x < 3$

(D) $f(x) > 0 \Rightarrow [x] < -2$ or $[x] > 3$
 $\Rightarrow x < -2$ or $x \geq 4$
 $\Rightarrow x \in (-\infty, -2) \cup [4, \infty)$

19. Let $f(x) = \min\{\sqrt{2}x, x^2\}$ & $g(x) = |x| \lceil x^2 \rceil$ & let S be the set such that $S = \{x, x \in (-2, 2); x \text{ is the point of discontinuity of } g(x)\}$, then $\sum_{x \in S} f(x)$

- (1) $1 - \sqrt{2}$
- (2) $1 - \sqrt{3}$
- (3) $1 + \sqrt{2}$
- (4) $1 + \sqrt{3}$

Ans. [1]

$$d^2 = 1/3 \Rightarrow d = +\frac{1}{\sqrt{3}} \text{ (as } a > b > c)$$

$$9(a^2 + b^2 + c^2) =$$

$$9\left[\left(\frac{1}{3} + \frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3} - \frac{1}{\sqrt{3}}\right)^2\right]$$

$$= 9\left[\frac{1}{3} + \frac{2}{3}\right] = 3 + 6 = 9$$

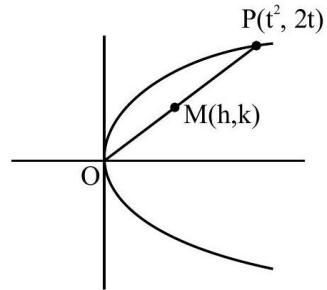
22. Let S be the locus of mid points of chords joining any point P on the parabola $y^2 = 4x$ to the origin. Now, R is the locus of a point dividing line segment OQ in the ratio 3 : 1 (internally) where Q is any point on the locus S, then equation of locus of R is:

(1) $3y^2 = 2x$

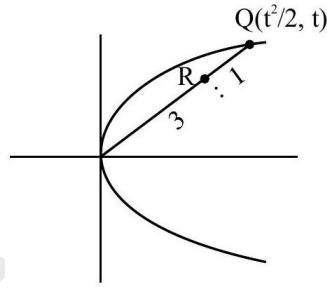
(2) $2y^2 = 3x$

(3) $9y^2 = 4x$

(4) $4y^2 = 3x$


Ans. [2]

Sol. $y^2 = 4x$


Locus of mid point of OP

$$M(h, k) \Rightarrow h = \frac{t^2}{2}, k = t$$

$$\Rightarrow k^2 = 2h \Rightarrow y^2 = 2x$$

$$S: y^2 = 2x$$

$$R(h, k)$$

$$\Rightarrow h = \frac{3t^2}{4}, k = \frac{3t}{4}$$

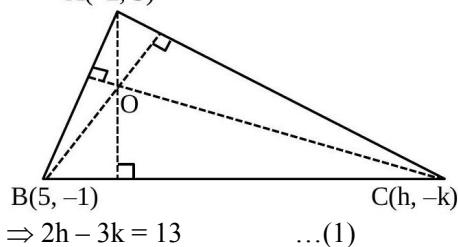
$$t^2 = \frac{8h}{3}, t = \frac{4k}{3}$$

$$\Rightarrow \frac{16k^2}{9} = \frac{8h}{3} \Rightarrow 2k^2 = 3h$$

$$\text{Locus of } R: 2y^2 = 3x$$

23. **Statement 1 :** If two vertices of triangle ABC are $(-2, 3)$ & $(5, -1)$ & orthocentre of triangle is $(0, 0)$ then third vertex of triangle is $(-4, -7)$.

Statement 2 : If $2a, b, c$ are in A.P., then lines $ax + by + c = 0$ are concurrent at point $(2, -2)$.


- (1) Both statement-1 and statement-2 are correct
- (2) Both statement-1 and statement-2 are incorrect
- (3) Statement-1 is correct and statement-2 is incorrect
- (4) Statement-1 is incorrect and statement-2 is correct

Ans. [1]

Sol. Solution of statement-1

$$m_{AO} \cdot m_{BC} = -1$$

$A(-2, 3)$

$$\Rightarrow 2h - 3k = 13 \quad \dots(1)$$

$$\text{& } m_{AB} \cdot m_{OC} = -1$$

$$\Rightarrow 4k = 7h \quad \dots(2)$$

\Rightarrow third vertex is $(-4, -7)$

Solution of statement-2

$2a, b, c \rightarrow \text{A.P.}$

$$b = \frac{2a + c}{2}$$

$$\Rightarrow 2a - 2b + c = 0$$

\because lines $ax + by + c = 0$ are concurrent then $\frac{x}{2} = \frac{y}{-2} = \frac{1}{1}$

$$x = 2 \text{ and } y = -2$$

\therefore Pt. of concurrency is $(2, -2)$

\therefore Statement 2 is correct.

24. The number of elements in the relation $R = \{(x, y) : 4x^2 + y^2 < 52, x, y \in \mathbb{Z}\}$ is

- (1) 85
- (2) 77
- (3) 104
- (4) 95

Ans. [2]

Sol. $4x^2 + y^2 < 52, x, y \in \mathbb{Z}$

$$\begin{array}{ll} \downarrow & \downarrow \\ 0 & 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7 \rightarrow 1 \times 15 = 15 \\ \pm 1 & 0, \pm 1, \pm 2, \pm 3, \dots, \pm 6 \rightarrow 2 \times 13 = 26 \\ \pm 2 & 0, \pm 1, \pm 2, \pm 3, \dots, \pm 5 \rightarrow 2 \times 11 = 22 \\ \pm 3 & 0, \pm 1, \pm 2, \pm 3 \rightarrow 2 \times 7 = 14 \end{array}$$

Number of elements = 77