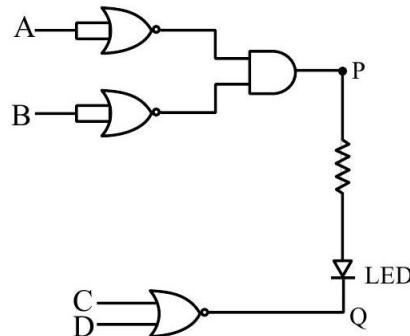


CAREER POINT


JEE Main Online Exam 2026

Memory Based Questions & Solution

22st January 2026 | Morning

PHYSICS

1. In the figure the LED will glow for input of A, B, C, D : (0 is low potential and 1 is high potential)

(1) 0010

(2) 0000

(3) 1100

(4) 1000

Ans. [1]

Sol. LED will glow in forward biasing :

P higher potential – 1

Q lower potential – 0

2. An α -particle is projected towards a fixed gold nucleus ($Z = 79$) with kinetic energy 7.9 MeV. If particle is just able to touch the nucleus boundary. Find diameter of nucleus :

(1) 57.6 fm

(2) 45.6 fm

(3) 36.6 fm

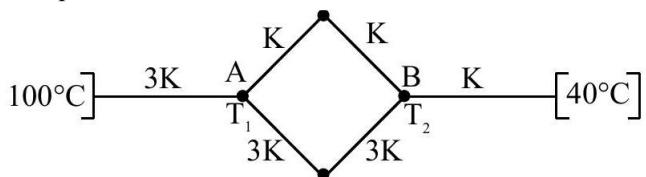
(4) 20.6 fm

Ans. [1]

Sol. $K_f + U_i = K_f + U_f$

$$7.9 \text{ MeV} + 0 = 0 + \frac{K \cdot Qq}{r}$$

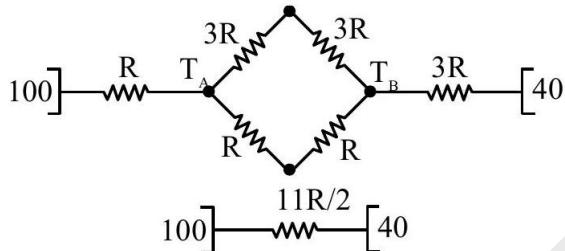
$$7.9 \times 10^6 \times e = \frac{9 \times 10^9 \times 79e.2e}{r}$$


$$r = 9 \times 10^3 \times 10 \times 2 \times 1.6 \times 10^{-19}$$

$$= 28.8 \times 10^{-15} = 2.88 \times 10^{-14} \text{ m}$$

$$d = 2r = 5.76 \times 10^{-14} \text{ m}$$

$$= 57.6 \text{ fm}$$


3. As shown in the figure, six rods of same geometry are connected, and maintained at temperatures 100°C and 40°C . The temperature at points A and B are :

(1) $T_A = 73^\circ\text{C}$, $T_B = 89^\circ\text{C}$ (2) $T_A = 85^\circ\text{C}$, $T_B = 75^\circ\text{C}$
 (3) $T_A = 89^\circ\text{C}$, $T_B = 73^\circ\text{C}$ (4) $T_A = 74^\circ\text{C}$, $T_B = 88^\circ\text{C}$

Ans. [3]

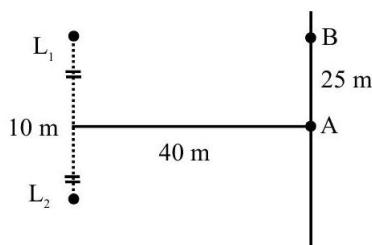
Sol. Let $R = \frac{\ell}{3KA}$

$$\left[H = \frac{100 - 40}{11R} \right] \dots (1)$$

$$= \frac{100 - T_A}{R} \quad \dots \dots (2)$$

$$120 = 1100 - 11 T_A$$

using (1) and (2)


$$T_A = 89^\circ C$$

$$= \frac{T_B - 40}{3R}$$

using (1) and (3)

$$T_B = 73^\circ C$$

4. Two coherent loudspeaker L_1 and L_2 are placed at separation of 10 m parallel to the wall at distance 40 m as shown in the figure. On width AB on the wall, 10 maximas and minimas are found. If velocity of sound is 324 m / s . find frequency of sound $(\sqrt{5} = 2.23)$:

Ans. [1]

Sol. $L_1 B = \sqrt{20^2 + 40^2} = 20\sqrt{5} \text{ m} = 44.6 \text{ m}$

$$L_2 B = \sqrt{30^2 + 40^2} = 50 \text{ m}$$

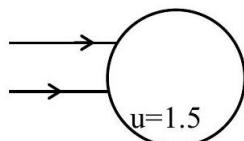
$$\Delta x = 50 - 44.6 = 5.4 \text{ m} = 10\lambda \text{ for 10 cycles}$$

$$\lambda = 0.54 \text{ m}$$

$$f = \frac{v}{\lambda} = \frac{324}{0.54} = 600 \text{ Hz}$$

5. There is a glass sphere of refractive index 1.5, on which a parallel beam of light falls. Find distance of final converging point of final emergent ray from centre of the sphere. Radius of sphere is 50 cm :

(1) 75 cm


(2) 70 cm

(3) 80 cm

(4) 65 cm

Ans. [1]

Sol.

1st refraction

$$\frac{1.5}{v} - \frac{1}{\infty} = \frac{1.5 - 1}{+50}$$

$$\frac{1.5}{v} = \frac{1}{100} \Rightarrow v = 150 \text{ cm or}$$

= 50 cm from 2nd surface

2nd refraction

$$\frac{1}{v} - \frac{1.5}{+50} = \frac{1 - 1.5}{-50} = -2$$

$$\frac{1}{v} = \frac{1}{100} + \frac{3}{100} = \frac{4}{100}$$

$$v = 25 \text{ cm}$$

∴ Distance from centre = 75 cm

6. If potential is $v = 500$ volts at $(10, 20)$ and electric field given $\vec{E} = 10x\hat{i} + 5y\hat{j} \text{ N/C}$. Find potential at origin.

(1) 1000 volt

(2) 2000 volt

(3) 1500 volt

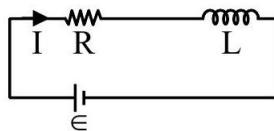
(4) 3000 volt

Ans. [2]

Sol. $\Delta V = - \int \vec{E} \cdot d\vec{r}$

$$V_{(10,20)} - V_{(0,0)} = - \int_{(0,0)}^{(10,20)} (10x dx + 5y dy)$$

$$500 - V = - \left[5x^2 + \frac{5}{2}y^2 \right]_{0,0}^{10,20}$$


$$= - \left[5(10)^2 + \frac{5}{2}(20)^2 - 0 \right]$$

$$500 - V = -1500$$

$$V = 500 + 1500$$

$$V_{(0,0)} = 2000 \text{ volt}$$

7. Find energy density at the instant current is $\frac{1}{e}$ times maximum value. If value is $\alpha \frac{\pi}{e^2}$. Find α .
 (Given : $\epsilon = 10$ volt, $R = 10\Omega$, $L = 10\text{mH}$, $\frac{N}{\ell} = 10000$.)

Ans. [20]

Sol. $\frac{I_0}{e} = I = I_0 \left(1 - e^{-Rt/L}\right)$, where $I_0 = \epsilon/R$

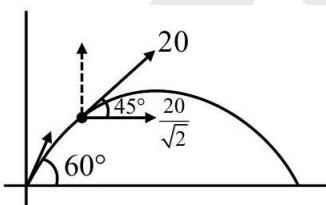
$$\text{Energy density} = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{1}{2\mu_0} (\mu_0 n I)^2$$

$$= \frac{1}{2} \mu_0 n^2 I^2$$

$$= \frac{1}{2} \mu_0 n^2 \frac{I_0^2}{e^2}$$

$$= \frac{1}{2} (4\pi) (10^{-7}) (10000)^2 \left(\frac{10}{10}\right)^2 \frac{1}{e^2}$$

$$= 2 \times 10^{+1} \times \left(\frac{\pi}{e^2}\right)$$


$$\frac{\alpha\pi}{e^2} = 20 \left(\frac{\pi}{e^2}\right) \Rightarrow \alpha = 20$$

8. A particle is projected at an angle of 60° with the ground. When projectile makes an angle 45° with the horizontal, its speed becomes 20 m/s , then initial velocity is :

(1) $20\sqrt{2} \text{ m/s}$ (2) $10\sqrt{2} \text{ m/s}$ (3) $5\sqrt{5} \text{ m/s}$ (4) $10\sqrt{5} \text{ m/s}$

Ans. [1]

Sol.

$$u \cos 60^\circ = \frac{20}{\sqrt{2}}$$

$$\frac{u}{2} = \frac{20}{\sqrt{2}}$$

$$u = \frac{40}{\sqrt{2}}$$

$$u = 20\sqrt{2} \text{ m/s}$$

9. Two discs having same moment of inertia about their axis. Their thicknesses are t_1 and t_2 and they have same density. If $R_1 / R_2 = 1/2$, then find t_1 / t_2 :

(1) $1/16$ (2) 16 (3) $1/4$ (4) 4

Ans. [2]

$$\text{Sol.} \quad I_1 = I_2$$

$$\frac{M_1 R_1^2}{2} = \frac{M_2 R_2^2}{2}$$

$$\rho \frac{\pi R_1^2 t_1 R_1^2}{2} = \rho \frac{\pi R_2^2 t_2 R_2^2}{2}$$

$$\frac{t_1}{t_2} = \frac{R_2^4}{R_1^4} = 2^4$$

$$\frac{t_1}{t_2} = 16$$

10. For an ideal gas in a reversible process ($\Delta Q = 0$), volume becomes 8 times and temperature becomes $\frac{1}{4}$ times the initial value. Identify the gas :

(1) CO₂ (2) O₂ (3) NH₃ (4) He

Ans. [4]

$$\text{Sol.} \quad PV^\gamma = \text{constant}$$

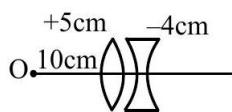
$$TV^{\gamma-1} = \text{constant}$$

$$TV^{\gamma-1} = \left(\frac{T}{4}\right)(8V)^{(\gamma-1)}$$

$$4 = 8^{(\gamma-1)}$$

$$\gamma^2 - \gamma^{3\gamma-3}$$

$$2 = 3(\gamma - 1)$$


$$\gamma = \frac{5}{3}$$

Gas is a monoatomic gas

Answer is He.

11. A convex lens of focal length 5 cm and a concave lens of focal length 4 cm are placed in contact and a point object is placed at 10 cm from system. In this arrangement magnification is m_1 . Now keeping system as it is concave lens is moved 1 cm away and now magnification becomes m_2 . Find m_1 / m_2 :

Ans. [1]

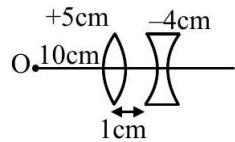
Sol. Initial configuration

$$\frac{1}{f} = \frac{1}{5} - \frac{1}{4} = -\frac{1}{20}$$

$$f = -20 \text{ cm}$$

$$u = -10 \text{ cm}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$


$$v = \frac{uf}{u+f}$$

$$m_1 = \frac{v}{u} = \frac{f}{u+f}$$

$$= \frac{-20}{-10-20}$$

$$= +\frac{2}{3}$$

New configuration

1st refraction

$$u = -10 \text{ cm}, f = +5 \text{ cm}$$

$$v = \frac{uf}{u+f} = +10 \text{ cm}$$

$$m = -1$$

2nd refraction

$$u = +9 \text{ cm}, f = -4 \text{ cm}$$

$$m' = \frac{f}{u+f} = \frac{-4}{5}$$

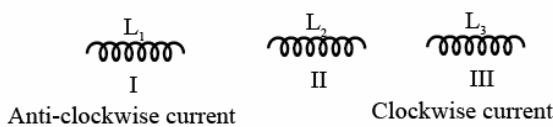
$$m_2 = mm' = (-1) \left(-\frac{4}{5} \right) = \frac{4}{5}$$

$$\frac{m_1}{m_2} = \frac{2}{3} \times \frac{5}{4} = \frac{5}{6}$$

12. A photon is incident on particle having mass $m = 15.356$ amu. What should be the frequency of photon so that particle of mass 'm' breaks into four α -particles :

(given : $m_\alpha = 4.004$ amu; $h = 6.6 \times 10^{-34}$ Js)

(1) 14.9×10^{19} kHz (2) 12.9×10^{19} kHz (3) 9.9×10^{19} kHz (4) 10.9×10^{19} kHz

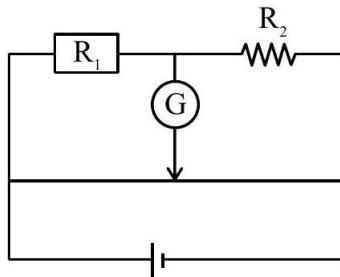

Ans. [1]

Sol. $h\nu = (4 \times 4.004 - 15.356) \text{ amu} \times c^2$

$$v = \frac{0.66}{h} \times 931 \times 10^6 \text{ eV}$$

$$v = 14.9 \times 10^{19} \text{ kHz}$$

13. As shown three coils are given having equal current in first and last coil, choose the correct option for the 2nd inductor to have clockwise current :



(1) Move L_1 to words L_2 & L_3 away from L_2 . (2) Move L_1 away from L_2 & L_3 away from L_2 .
 (3) Move L_1 to words L_2 & L_3 towards L_2 . (4) Move L_1 away from L_2 & L_3 towards L_2 .

Ans. [1]

Sol. Theory

14. Figure shows a meter bridge

Initially null point was achieved at a distance of 40 cm. When a resistance 16Ω is attached in parallel with R_2 , new balance point was achieved at 50 cm. Then find value of R_1 and R_2 :

(1) $R_1 = 8\Omega, R_2 = \frac{16}{3}\Omega$ (2) $R_1 = 16\Omega, R_2 = 8\Omega$
 (3) $R_1 = \frac{16}{3}\Omega, R_2 = 8\Omega$ (4) $R_1 = 8\Omega, R_2 = 16\Omega$

Ans. [3]

Sol. Initially :

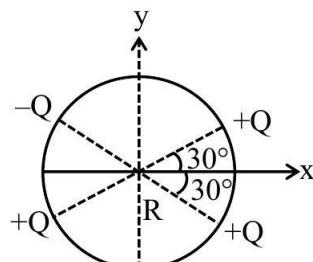
$$\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3} \Rightarrow R_1 = \frac{2}{3} R_2$$

Again

$$\frac{R_1}{16R_2} = 1 \Rightarrow \frac{2}{3} R_2 = \frac{16R_2}{16 + R_2} \Rightarrow R_2 = 8\Omega$$

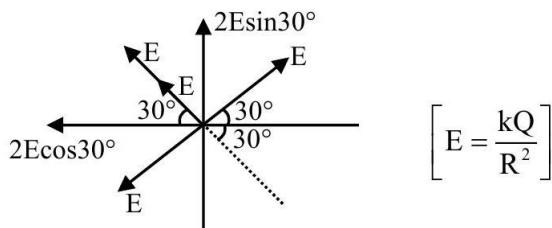
$$\therefore R_1 = \frac{16}{3}\Omega$$

15. **Statement-1 :** Liquid pressure is only exerted on solid surface in contact and is exerted in between the layers of liquid.


Statement-2 : Surface tension arises due to difference in potential energy of molecules in bulk of liquid and at surface.

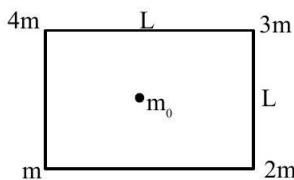
(1) Both Statement-1 and Statement-2 are incorrect.
 (2) Statement-1 is correct but Statement-2 is incorrect.
 (3) Statement-1 is incorrect but Statement-2 is correct.
 (4) Both Statement-1 and Statement-2 are correct.

Ans. [4]


Sol. Theory

16. Find electric field intensity \vec{E} at centre of circle :

(1) $\frac{KQ}{R^2} \hat{i} + \frac{KQ}{R^2} \hat{j}$ (2) $\frac{-\sqrt{3}KQ}{R^2} \hat{i} + \frac{KQ}{R^2} \hat{j}$ (3) $\frac{KQ}{R^2} \hat{i} + \frac{\sqrt{3}KQ}{R^2} \hat{j}$ (4) $\frac{\sqrt{3}KQ}{R^2} \hat{i} + \frac{\sqrt{3}KQ}{R^2} \hat{j}$

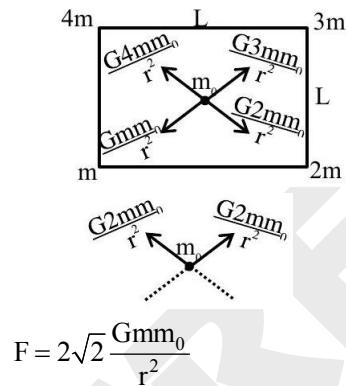

Ans. [2]

Sol.

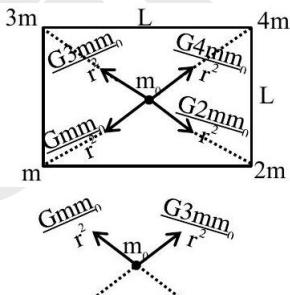
$$\vec{E}_{\text{net}} = 2E\cos30^\circ(\hat{i}) + 2E\sin30^\circ(\hat{j})$$

$$\frac{-\sqrt{3}kQ}{R^2}(\hat{i}) + \frac{kQ}{R^2}(\hat{j})$$

17. If initially force on $m_0 = F_0$. When position of 4 m & 3 m are interchanged, force become F' . If $F_0 / F' = \alpha / \sqrt{5}$. Find α :



(1) 1


(2) 2

(3) 3

(4) 4

Ans.
[2]
Sol. Initial configuration

New configuration

$$\therefore \alpha = 2$$

18. Escape velocity from a planet of radius R and density ρ is given as 10 km/s . Find the escape velocity from a planet of radius $\frac{R}{10}$ and density $\frac{\rho}{10}$:

(1) $10\sqrt{100} \text{ m/s}$ (2) $110\sqrt{10} \text{ m/s}$ (3) $100\sqrt{10} \text{ m/s}$ (4) $90\sqrt{10} \text{ m/s}$

Ans. [3]

Sol. $V_e = 10 \text{ km/s} = 10^4 \text{ m/s} \Rightarrow \sqrt{\frac{2GM}{R}} = 10^4$

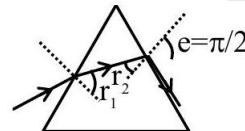
$$\sqrt{\frac{2G\left(\rho \frac{4}{3}\pi R^3\right)}{R}} = 10^4$$

$$\Rightarrow \sqrt{\frac{8}{3}G\rho\pi R^2} = 10^4 \quad \dots \text{(i)}$$

$$v_e' = \sqrt{\frac{2GM}{R'}} = \sqrt{\frac{2G\rho \frac{4\pi}{3}\left(\frac{R}{10}\right)^3}{\frac{R}{10}}}$$

$$v_e' = \sqrt{\frac{8G}{3}\frac{\rho\pi R^2}{10^3}} = \frac{v_e}{\sqrt{10^3}}$$

$$v_e' = \frac{10^4}{\sqrt{10^3}} = 10^{(4-3/2)} = 10^{5/2}$$

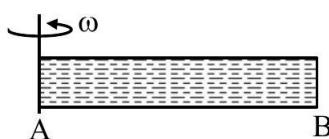

$$v_e' = 100\sqrt{10} \text{ m/s}$$

19. A ray of light is incident at angle of incidence ' i ' on an equilateral prism. If the ray emerges grazing the second surface, find angle of refraction (in degree) at first surface. Refraction index is $\sqrt{2}$.

Ans. [15]

Sol. Equilateral prism.

$$A = 60^\circ$$

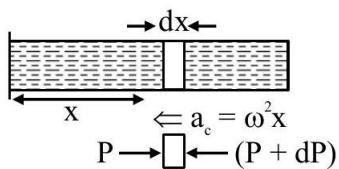

$$\mu \sin r_2 = 1, \sin e = 1$$

$$\sin r_2 = \frac{1}{\mu} = \frac{1}{\sqrt{2}}$$

$$r_2 = 45^\circ$$

$$\therefore r_1 = A - r_2 = 15^\circ$$

20. A closed tube filled with ideal gas is rotating with ' ω ' along axis passing through end A. Find pressure at other end B (M is molar mass of the gas, ℓ is length of tube and T is the temperature of gas) :


Given pressure at 'A' is P_A :

(1) $P_A e^{\frac{\omega^2 \ell^2 M}{2RT}}$

(2) $P_A e^{\frac{\omega^2 \ell^2 M}{RT}}$

(3) $P_A e^{\frac{\omega^2 \ell^2 M}{3RT}}$

(4) $P_A e^{\frac{\omega^2 \ell^2 M}{4RT}}$

Ans. [1]
Sol.

$$A[(P + dP) - P] = (dm)(\omega^2 x)$$

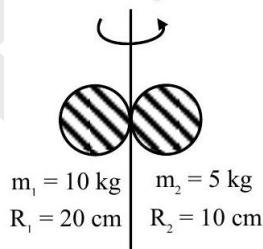
$$dP = \frac{(dm)}{A} \omega^2 x$$

$$dP = \frac{(\rho)(A)(dx)\omega^2 x}{A}$$

$$\text{also } [PM = \rho RT]$$

$$\rho = \frac{PM}{RT}$$

$$dP = \left(\frac{PM}{RT} \right) \omega^2 x dx$$


$$\int_{P_A}^{P_B} \frac{dP}{P} = \frac{\omega^2 M}{RT} \int_0^\ell x dx$$

$$\ln \left(\frac{P_B}{P_A} \right) = \frac{\omega^2 \ell^2 M}{2RT}$$

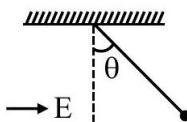
$$P_B = P_A e^{\frac{\omega^2 \ell^2 M}{2RT}}$$

21. Find the moment of inertia about given axis.

Two solid spheres

(1) 0.63 kg m^2

(2) 0.61 kg m^2


(3) 0.62 kg m^2

(4) 0.60 kg m^2

Ans. [1]

$$\begin{aligned} \text{Sol. } I &= \frac{2}{5} m_1 R_1^2 + m_1 R_1^2 + \frac{2}{5} m_2 R_2^2 + m_2 R_2^2 \\ &= \frac{7}{5} [m_1 R_1^2 + m_2 R_2^2] \\ &= \frac{7}{5} [10 \times (20)^2 + 5(10)^2] \times 10^{-4} \\ &= \frac{7}{5} [10 \times 4 + 5] \times 10^2 \times 10^{-4} = \frac{7}{5} \times 45 \times 10^{-2} \\ I &= 63 \times 10^{-2} \text{ kg m}^2 \\ I &= 0.63 \text{ kg m}^2 \end{aligned}$$

22. A simple pendulum with bob of mass m carrying charge q is in equilibrium in presence of horizontal electric field E , then tension in the thread is :

(1) $T = \sqrt{(qE)^2 + (mg)^2}$

(3) $T = \sqrt{(qE)^2 - (mg)^2}$

(2) $T = mg + qE \tan \theta$

(4) $T = mg - qE \tan \theta$

Ans. [1]

Sol.

$$T = \sqrt{(qE)^2 + (mg)^2}$$

23. The energy required to excite electron from first Bohr's orbit of Hydrogen atom to second Bohr's orbit in J is :

(1) 1.634×10^{-18} J

(2) 1.2×10^{-18} J

(3) 0.2×10^{-18} J

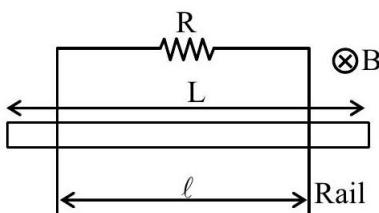
(4) 1.2×10^{-20} J

Ans. [1]

Sol. $E_n = \frac{-13.6}{n^2}$ eV

$$\Rightarrow n=1; E_1 = -13.6 \text{ eV}$$

$$\Rightarrow n=2; E_2 = \frac{-13.6}{2^2} = -3.4 \text{ eV}$$

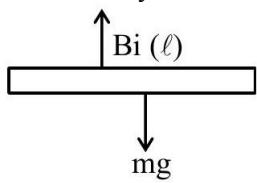

$$\Delta E = E_2 - E_1 = -3.4 - (-13.6)$$

$$= 10.2 \text{ eV}$$

$$\Delta E = 10.2 \times 1.6 \times 10^{-19}$$

$$\Delta E = 1.634 \times 10^{-18} \text{ J}$$

24. A rod of mass ' m ' and length ' L ' is released on a rail placed in uniform magnetic field B . What will be the terminal velocity of rod:


(1) $\frac{mgR}{B^2 L^2}$

(2) $\frac{mgR}{B^2 \ell^2}$

(3) $\frac{mgR}{B \ell^2}$

(4) $\frac{mg}{B^2 \ell^2 R}$

Ans. [2]

Sol. Terminal velocity

$$i = \frac{(B)(v)(l)}{R}$$

$$B(i)(l) = mg$$

$$B \left[\frac{Bvl}{R} \right] l = mg$$

$$\frac{B^2 l^2 v}{R} = mg$$

$$v = \frac{mgR}{B^2 l^2}$$

25. Match the following:

(1)	Spring constant	(i)	$ML^2 T^{-2} K^{-1}$
(2)	Thermal Conductivity	(ii)	$MLT^{-3} K^{-1}$
(3)	Boltzman constant	(iii)	$ML^0 T^{-2}$
(4)	Inductance	(iv)	$ML^2 T^{-2} A^{-2}$

(1) (1) \rightarrow (ii), (2) \rightarrow (iii), (3) \rightarrow (i), (4) \rightarrow (iv)

(2) (1) \rightarrow (iii), (2) \rightarrow (i), (3) \rightarrow (ii), (4) \rightarrow (iv)

(3) (1) \rightarrow (i), (2) \rightarrow (ii), (3) \rightarrow (iii), (4) \rightarrow (iv)

(4) (1) \rightarrow (iii), (2) \rightarrow (ii), (3) \rightarrow (i), (4) \rightarrow (iv)

Ans.
[4]
Sol. $F = Kx$

$$K = F / x$$

$$[K] = \frac{[MLT^{-2}]}{[L]} = MT^{-2} \dots (iii)$$

(A) \rightarrow (iii)

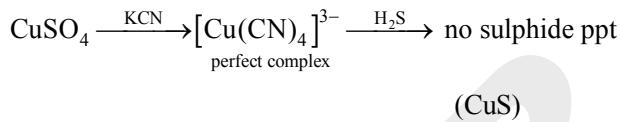
(B) Thermal conductivity : $[MLT^{-3} K^{-1}] \rightarrow$ (ii)

(C) Boltzman constant : $[ML^2 T^{-2} K^{-1}] \rightarrow$ (i)

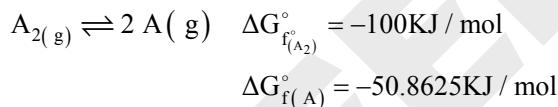
(D) Inductance : $[ML^2 T^{-2} A^{-2}] \rightarrow$ (iv)

JEE Main Online Exam 2026

Memory Based Questions & Solution


22st January 2026 | Morning

CHEMISTRY


SECTION-A

Ans. [1]

Sol. $\text{Cu} \xrightarrow{\text{dil. HCl}} \text{X}$

2. For the reaction

At 300 K and 1 atm. pressure degree of dissociation of A_2 gas at equilibrium is $x \times 10^{-2}$. Find x.

$$R = 8.3 \text{ Jmol}^{-1} \text{ K}^{-1}$$

Ans. [58]

$$\text{Sol. } -1.725 \times 10^3 = -8.3 \times 300 \ln_n$$

$$\ln K_p = 0.693$$

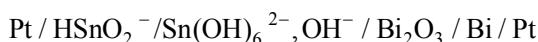
$$K_n = 2$$

$$2 = \frac{4\alpha^2 P_0}{1 - \alpha^2}$$

$$\alpha = \frac{1}{\sqrt{3}}$$

$$\alpha = \frac{100}{\sqrt{3}} \times 10^{-2} = 57.736 \times 10^{-2}$$

3. An element of p-block forms a species of type EH_4^+ , which when passed through a basic solution of $\text{K}_2[\text{HgI}_4]$, forms a brown ppt.


Select the correct option :

- (1) Element E has maximum covalency equal to 5.
- (2) Brown ppt. formed is $\text{HgO} \cdot \text{Hg}(\text{NH}_2)\text{I}$.
- (3) Element E has maximum electron affinity in its group.
- (4) EH_3 is phosphine.

Ans. [2]

Sol. Element E is N, the species is NH_4^+

4. If E_{cell} of following reaction is $x \times 10^{-1}$. Find x

[Reaction Quotient, $Q = 10^6$]

$$\text{Given } E_{[\text{Sn}(\text{OH})_6]^{2-}/\text{HSnO}_2^-}^\circ = -0.90 \text{ V}$$

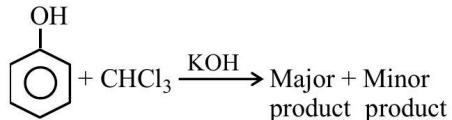
$$E_{\text{Bi}_2\text{O}_3/\text{Bi}}^\circ = -0.44 \text{ V}$$

Ans. [4]

Sol. $E_{\text{cell}}^\circ = -0.44 - (-0.90)$

$$= +0.46 \text{ V}$$

Applying Nernst equation :-

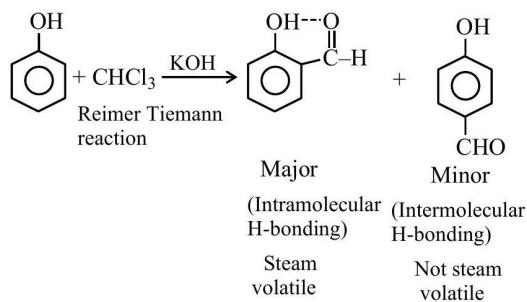

$$E_{\text{cell}} = E_{\text{cell}}^\circ - \frac{0.06}{n} \log Q$$

$$E_{\text{cell}} = 0.46 - \frac{0.06}{6} \log 10^6$$

$$E_{\text{cell}} = 4 \times 10^{-1}$$

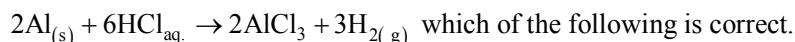
$$x = 4$$

5. **Statement-I :**


Major product is ortho substituted product and minor product is para substituted.

Statement-II :

Ortho & Para substituted products can be separated by steam distillation.


- (1) Statement-I and Statement-II both are correct.
- (2) Statement-I and Statement-II both are incorrect.
- (3) Only Statement-I is correct.
- (4) Only Statement-II is correct.

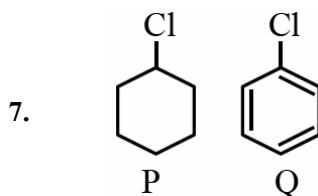
Ans. [1]

Sol.

Therefore can be separated by steam distillation

6. For Balanced chemical reaction

which of the following is correct.


- (1) With excess of Al, volume of H_2 gas produced per mole of HCl reacted will be 33.6 L at 1 atm & 273 K
- (2) With excess of Al, volume of H_2 gas produced per mole of HCl reacted will be 11.2 L at 1 atm & 273 K
- (3) With excess of HCl, moles of AlCl_3 produced per mole of Al reacted are 2.
- (4) At given P and T, 12 L HCl produce 6 L H_2 gas.

Ans. [2]

Sol. $6 \text{ moles HCl} \rightarrow 3 \text{ mol H}_2$

4th option is incorrect since, HCl is in aqueous medium.

Read the following statements :

- (A) Q has more δ^- on chlorine than P.
- (B) Q has more dipole moment than P.
- (C) In Q, C – Cl bond has double bond character.
- (D) In Q, Cl is attached to sp^2 hybridised carbon but in P, Cl is attached to sp^3 .
- (E) In Q, C-Cl bond length is more due to repulsion between lone pair on chlorine and πe^- in aromatic ring.

The correct option is :

- (1) A, B, D, E
- (2) C, D
- (3) B, C, D
- (4) B, C, D, E

Ans.

(2)

Sol. Theory based

8. Number of unpaired e^- in low spin octahedral complex formed by ions Mn^{3+} , Cr^{3+} , Fe^{3+} & Co^{3+} follows the order :

(1) $\text{Mn}^{3+} > \text{Cr}^{3+} > \text{Fe}^{3+} > \text{Co}^{3+}$	(2) $\text{Cr}^{3+} > \text{Mn}^{3+} > \text{Fe}^{3+} > \text{Co}^{3+}$
(3) $\text{Fe}^{3+} > \text{Cr}^{3+} > \text{Co}^{3+} > \text{Mn}^{3+}$	(4) $\text{Co}^{3+} > \text{Fe}^{3+} > \text{Cr}^{3+} > \text{Mn}^{3+}$

Ans. [2]

Sol. $\text{Co}^{3+} \rightarrow 3 \text{ d}^6 \Rightarrow t_{2g}^{2,2,2} e_g^{0,0}$, unpaired electron = 0

$\text{Fe}^{3+} \rightarrow 3 \text{ d}^5 \Rightarrow t_{2g}^{2,2,1} e_g^{0,0}$ unpaired electron = 1

$\text{Cr}^{3+} \rightarrow 3 \text{ d}^3 \Rightarrow t_{2g}^{1,1,1} e_g^{0,0}$ unpaired electron = 3

$\text{Mn}^{3+} \rightarrow 3 \text{ d}^4 \Rightarrow t_{2g}^{2,1,1} e_g^{0,0}$ unpaired electron = 2

9. Three experiments are running in separate vessel, following 1st order kinetics

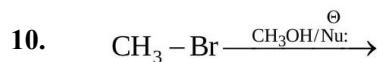
Experiment-(A) 100ml, 10M

Experiment-(B) 200ml, 10M

Experiment-(C) 100ml, 10M + 100ml H_2O

Select correct order of rate of reaction in above experiments

(1) $\text{A} = \text{B} = \text{C}$


(2) $\text{A} = \text{B} > \text{C}$

(3) $\text{A} > \text{B} > \text{C}$

(4) $\text{A} < \text{B} < \text{C}$

Ans. [2]

Sol. Rate \propto [concentration of Reactant]¹

Correct order of rate of this reaction for given nucleophile

$\text{Nu}^\ominus \Rightarrow \text{I}^\ominus, \text{F}^\ominus, \text{C}_2\text{H}_5\text{O}^\ominus, \text{PhO}^\ominus$

(1) $\text{F}^\ominus > \text{PhO}^\ominus > \text{C}_2\text{H}_5\text{O}^\ominus > \text{I}^\ominus$

(2) $\text{C}_2\text{H}_5\text{O}^\ominus > \text{PhO}^\ominus > \text{I}^\ominus > \text{F}^\ominus$

(3) $\text{I}^\ominus > \text{C}_2\text{H}_5\text{O}^\ominus > \text{PhO}^\ominus > \text{F}^\ominus$

(4) $\text{PhO}^\ominus > \text{C}_2\text{H}_5\text{O}^\ominus > \text{F}^\ominus > \text{I}^\ominus$

Ans. (3)

Sol. For the given substrate of nucleophiles :

Order of nucleophilicity :

$\text{I}^\ominus > \text{C}_2\text{H}_5\text{O}^\ominus > \text{PhO}^\ominus > \text{F}^\ominus$

11. Match the following and choose the correct option.

List-I

(a) $[\text{Ag}(\text{NH}_3)_2]^\oplus$

(b) $\text{Zn} - \text{Hg} / \text{HCl}$

(c) $\text{NH}_2 - \text{NH}_2 / \text{KOH}$

(d) $\text{Cu}^{+2} / \text{OH}^\ominus$

(1) a \rightarrow (i), b \rightarrow (ii), c \rightarrow (iii), d \rightarrow (iv)

(3) a \rightarrow (iii), b \rightarrow (ii), c \rightarrow (iv), d \rightarrow (i)

List-II

(i) Fehling solution

(ii) Clemmensen reduction

(iii) Tollen's reagent

(iv) Wolff-Kishner reduction

(2) a \rightarrow (iv), b \rightarrow (iii), c \rightarrow (ii), d \rightarrow (i)

(4) a \rightarrow (i), b \rightarrow (ii), c \rightarrow (iv), d \rightarrow (iii)

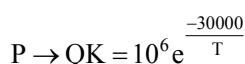
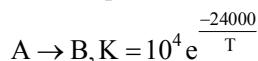
Ans. [3]

12. When sodium fusion extract of an organic compound was treated with CHCl_3 , then violet colour of halogen appears. If 0.15 gm of the organic compound gives 0.12 gm of the silver halide, then find the percentage of halide in organic compound.

(1) 43.23%

(2) 45.55%

(3) 42.32%



(4) 44.12%

Ans. [1]

Sol. % of I = $\frac{\text{Atomic weight of I}}{\text{Molecular weight of AgI}} \times \frac{m}{W} \times 100 = \frac{127}{235} \times \frac{0.12}{0.15} \times 100$

% of I = 43.23 %

13. Find temperature (in kelvin) at which rate constant are equal for the following reaction?

Ans. $T \approx 1303 \text{ K}$

$$10^4 e^{-\frac{24000}{T}} = 10^6 e^{-\frac{30000}{T}}$$

$$e^{\frac{6000}{T}} = 100$$

$$\frac{6000}{T} = 2\ln 10$$

$$T = \frac{6000}{2 \times 2.303}$$

$$T = 1302.64 \text{ K}$$

$$T \approx 1303 \text{ K}$$

14. Two elements of p-block can form following halides XF_3 & YF_3 . XF_3 can act as Lewis acid while YF_3 can act as Lewis base. Then hybridization of 'X' & 'Y' in XF_3 & YF_3 is respectively.

(1) sp^2sp^2

(2) sp^3sp^2

(3) sp^2,sp^3

(4) sp^3sp^3

Ans. [3]

Sol. $XF_3 = BF_3; YF_3 = NF_3$

15. **Statement-I :** Sucrose is dextrorotatory upon by hydrolysis it becomes laevorotatory.


Statement-II : Sucrose on hydrolysis gives glucose and fructose such that the levorotation of glucose is more than dextrorotation of fructose.

(1) Statement-I is true and Statement-II is false. (2) Statement-I is false and Statement-II is true.

(3) Only Statement-I is correct.

(4) Only Statement-II is correct.

Ans. [1]

Sucrose D-glucose + D-fructose

$$[\alpha]_D = +66.5^\circ, [\alpha]_D = +52.5^\circ, [\alpha]_D = -92.4^\circ$$

\Rightarrow Sucrose is dextrorotatory and hydrolysed product is laevorotatory.

16. Four elements from second period Boron to Oxygen can have following IE_1 values (in kJmol^{-1}) :

1086.5, 800.6, 1313.9, 1402.3

The value of IE_1 for "Nitrogen" is.

(1) 1086.5

(2) 800.6

(3) 1402.3

(4) 1313.9

Ans. [3]

Sol. $IE_1 : N > O > C > B$

17. For an ideal gas volume is made 8 times and temperature is decreased 4 times, and heat exchanged during process is zero ($q = 0$), select the correct gas

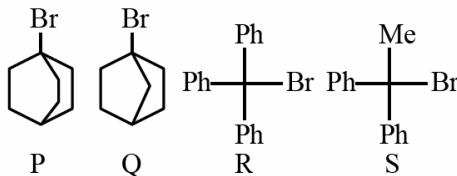
(1) CH_4

(2) He

(3) CO_2

(4) NH_3

Ans. [2]

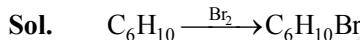

Sol. (I) $w = -nRT \ln \left(\frac{V_2}{V_1} \right)$
 $= -1 \times \frac{8.314}{1000} \times 300 \times \ln \left(\frac{20}{2} \right) = -5.74 \text{ KJ}$

(II) $w = -P_{\text{ext}} (V_2 - V_1)$
 $= -3 \times 10^3 \text{ Pa} \times (3 - 1)$
 $= -6 \text{ KJ}$

(III) $\Delta H = \frac{1 \times 5 \times 8.314}{2 \times 1000} \times 400 = 8.32 \text{ KJ}$

(IV) $\Delta U = nC_v \Delta T = \frac{1 \times 3 \times 8.314}{2 \times 1000} \times 320 = 3.99 \approx 4 \text{ KJ}$

22. Compare rate of S_N1

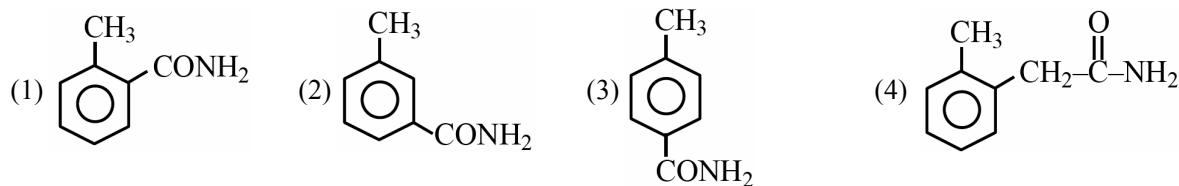

(1) P > Q > R > S (2) R > S > P > Q (3) R > S > Q > P (4) S > R > Q > P

Ans. [2]

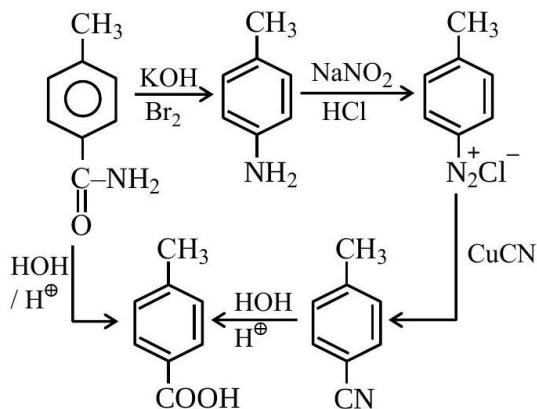
Sol. Rate of $S_N1 \propto$ Stability of C^\oplus

23. Cycloalkene (X) reacts with bromine. During reaction 1 mole of cycloalkane consumes 1 mole of Br_2 then form a product (Y). The product (Y) has C,Br ratio is 3:1. The % of bromine in product (Y) is :
 (1) 66.11% (2) 65.11% (3) 76.11% (4) 67.11%

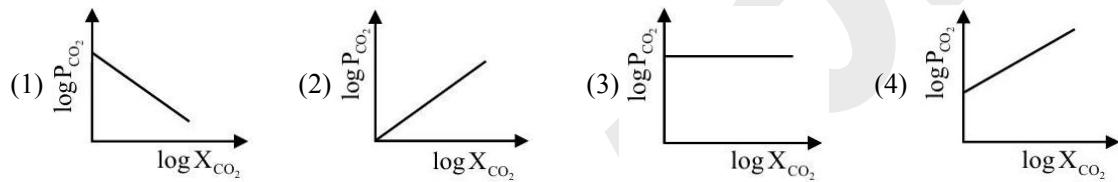
Ans. [1]


Molecular mass of $C_6H_{10}Br_2$ is :

$$12 \times 6 + 10 + 160 \\ 72 + 10 + 160 = 242$$


$$\% \text{ or } Br = \frac{160}{242} \times 100$$

$$\% \text{ of } Br = 66.11 \text{ %}$$


24. An organic compound with molecular formula C_8H_9NO when reacts with KOH / Br_2 forms 'P' which on diazotisation forms 'Q' followed by its reaction with CuCN forms 'R' which on hydrolysis (acidic) formed 'S' (S can also be made by hydrolysis of original compound $(X)C_8H_9NO$) 'S' can reaction with $KMnO_4 / H^\oplus$ forms 'T' which has two types of hydrogen. X will be :

Ans. [3]

Sol.

25. Which of the following graph is a correct between $\log P_{CO_2}$ v/s $\log x_{CO_2}$? [given P_{CO_2} = Partial Pressure of CO_2 , X_{CO_2} = Mole fraction of CO_2 in solution]

Ans. [4]

$$P_{CO_2} = K_H X_{CO_2}$$

$$\log P_{CO_2} = \log K_H + \log X_{CO_2}$$

$$y = c + mx$$

JEE Main Online Exam 2026

Memory Based Questions & Solution

22st January 2026 | Morning

MATHEMATICS

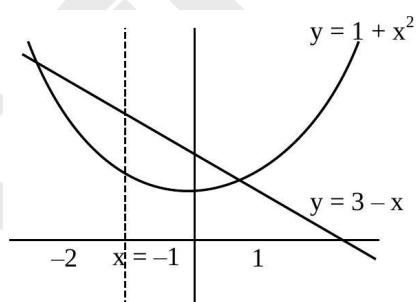
1. If the value of $\frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ}$ is $\frac{\alpha + \beta\sqrt{5}}{\gamma}$ then value of $(\alpha + \beta + \gamma)$

(where $\alpha, \beta, \gamma \in \mathbb{N}$ and are in lowest form) :

Ans. [4]

Sol. Use $\sin(A+B)\sin(A+B) = \sin^2 A - \sin^2 B$

$$\frac{\cos(A+B)\cos(A-B)}{\sin 30^\circ \sin 18^\circ} = \frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1} = \frac{(\sqrt{5}+1)^2}{4}$$


$$= \frac{3+\sqrt{5}}{2}$$

$$\alpha = 3; \beta = 1; \gamma = 2$$

$$\text{So, } (\alpha + \beta + \gamma) = 6$$

2. If a line $x = -1$ divide the area of region bounded by $\{(x, y) : 1 + x^2 \leq y \leq 3 - x\}$ in the ratio $\frac{m}{n}$ then $(m+n)$ equal (where HCF of $(m, n) = 1$) :

Ans.

$$\frac{m}{n} = \frac{\int_{-1}^1 [(3-x) - (1+x^2)] dx}{\int_{-2}^1 [(3-x) - (1+x^2)] dx} = \frac{20}{7}$$

$$\therefore m + n = 20 + 7 = 27$$

$$3f(x) = 3xf'(x) + 3x^2$$

$$x \frac{dy}{dx} - y = -x^2$$

$$\frac{x \frac{dy}{dx} - 9}{x^2} = -1$$

$$\Rightarrow \frac{d}{dx} \left(\frac{y}{x} \right) = -1$$

$$\frac{y}{x} = -x + C$$

$$\Rightarrow f(x) = -x^2 + Cx$$

$$\text{at } x=1, y=1 \Rightarrow C=2$$

$$f(x) = -x^2 + 2x$$

$$f(2) - f(3) = 3$$

8. If domain of $f(x) = \sin^{-1}\left(\frac{5-x}{2x+3}\right) + \frac{1}{\log_e(10-x)}$ is $(-\infty, \alpha] \cup (\beta, \gamma) - \{\delta\}$ then value of $6(\alpha + \beta + \gamma + \delta)$ is equal to :

Ans.

Ans.

$$\text{Sol. } -1 \leq \frac{5-x}{2x+3} \leq 10 \quad \& \quad 10-x > 0, 10-x \neq 1$$

$$\left| \frac{5-x}{2x+3} \right| \geq 1 \text{ } \& \text{ } x < 10 \text{ } \& \text{ } x \neq 9$$

$$(5-x)^2 - (2x+3)^2 \leq 0 \text{ & } x < 10 \text{ & } 4x \neq 9$$

$$(x+8)(3x-2) \geq 0 \text{ & } x < 10 \text{ & } x \neq 9$$

$$\Rightarrow (-\infty, -8] \cup \left(\frac{2}{3}, 10 \right) - \{9\}$$

$$\Rightarrow (\alpha + \beta + \gamma + \delta) = 6 \left(-8 + \frac{2}{3} + 10 + 9 \right) = 70$$

9. Let $M = \{1, 2, 3, \dots, 16\}$, if a relation R defined on set M such that $R = \{(x, y) : 4y = 5x - 3, x, y \in M\}$.

How many elements should be added to R to make it symmetric.

Ans. [1]

Sol. $R = \{(3,3), (7,8), (11,13)\}$ to make it symmetric $(8,7), (13,11)$ must be added.

10. If $S = \{1, 2, \dots, 50\}$, two numbers α and β are selected at random find the probability that product is divisible by 3 :

(1) $\frac{664}{1225}$

(2) $\frac{646}{1225}$

(3) $\frac{527}{1225}$

(4) $\frac{461}{1225}$

Ans. [1]

Sol. Req. probability = $1 - (\text{product not divisible by 3})$

Multiple of 3 = 16

Not multiple of 3 = 34 = $1 - \frac{^{34}C_2}{^{50}C_2} = \frac{664}{1225}$

11. The no. of solution in $x \in \left(-\frac{1}{2\sqrt{6}}, \frac{1}{2\sqrt{6}}\right)$ of equation $\tan^{-1} 4x + \tan^{-1} 6x = \frac{\pi}{6}$ is :

(1) 0

(2) 1

(3) 2

(4) 3

Ans. [2]

Sol. $\tan^{-1} 4x + \tan^{-1} 6x = \frac{\pi}{6}$

$$\Rightarrow \tan^{-1} \left(\frac{4x + 6x}{1 + 24x^2} \right) = \frac{\pi}{6}$$

$$\Rightarrow \frac{10x}{1 - 24x^2} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow 24x^2 + 10\sqrt{3}x - 1 = 0$$

$$x = \frac{-10\sqrt{3} \pm \sqrt{300 + 96}}{48}$$

$$x = \frac{\sqrt{396} - 10\sqrt{3}}{48}$$

Only 1 solution in $\left(-\frac{1}{2\sqrt{6}}, \frac{1}{2\sqrt{6}}\right)$

12. If probability distribution is given by

X	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$

Then find $P(3 < x \leq 6)$

(1) 0.33

(2) 0.22

(3) 0.11

(4) 0.44

Ans. [1]

Sol. $\sum P(x_i) = 1$

$$\Rightarrow 9k + 10k^2 = 1$$

$$\Rightarrow 10k^2 + 9k - 1 = 0 \Rightarrow k = \frac{1}{10}$$

$$P(3 < x \leq 6) = 3k + k^2 + 2k^2$$

$$= \frac{3}{10} + \frac{3}{100} = 0.33 \Rightarrow 0.33$$

Ans. [4]

$$\text{Sol. } \frac{xdy - ydx}{x^2} = \frac{\sqrt{x^2 + y^2}}{x^2} dx$$

$$d\left(\frac{y}{x}\right) = \sqrt{1 + \frac{y^2}{x^2}} \cdot \frac{1}{x} dx$$

$$\int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1+\left(\frac{y}{x}\right)^2}} = \int \frac{1}{x} dx$$

$$\Rightarrow \ln\left(\frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}}\right) = \ln x + \ln k = \ln kx$$

$$\Rightarrow y + \sqrt{x^2 + y^2} = kx^2$$

$$0+1=k$$

$$v + \sqrt{9 + v^2} = 9$$

v - 4

14. If two circles $x^2 + y^2 - 4x - 2y - 4 = 0$ & $(x+1)^2 + (y+4)^2 = r^2$ intersect at two distinct points and range of $r \in (\alpha, \beta)$, then the value of $\alpha\beta$ is :

Ans. [25]

$$\text{Sol. } (x-2)^2 + (y-1)^2 = 3^2 \text{ & } (x+1)^2 + (y+4)^2 = r^2$$

$$|r_1 - r_2| < c_1 c_2 < r_1 + r_2$$

$$|r-3| < \sqrt{(2+1)^2 + (1+4)^2} < r+3$$

$$|r-3| < \sqrt{34} \text{ & } r+3 > \sqrt{34}$$

$$-\sqrt{34} < r - 3 < \sqrt{34} \text{ & } r > \sqrt{34} - 3$$

i.e. $r = (3 - \sqrt{34}, 3 + \sqrt{34}) \cap (\sqrt{34} - 3, \infty)$

i.e. $r \in (\sqrt{34} - 3, \sqrt{34} + 3)$

$$\therefore \alpha\beta = (\sqrt{34} - 3)(\sqrt{34} + 3)$$

$$= 34 - 9$$

$$= 25$$

20. $f(x) = x^{2025} - x^{2000}$, $x \in [0, 1]$, then minimum value of $f(x)$ is :

(1) $(80)^{400} \cdot (81)^{-395} \left((80)^5 - (81)^5 \right)$ (2) $(80)^{300} \cdot (81)^{-295} \left((80)^5 - (81)^5 \right)$
 (3) $(80)^{-395} \cdot (81)^{+400} \left((80)^4 - (81)^4 \right)$ (4) $(80)^{-395} \cdot (81)^{+400} \left((80)^3 - (81)^3 \right)$

Ans. [1]

Sol. $f(x) = x^{2025} - x^{2000}$

$$f'(x) = 2025x^{2024} - 2000x^{1999}$$

$$25x^{1999} (81x^5 - 80) = 0$$

$$x = \left(\frac{80}{81} \right)^{1/5}$$

Minimum at $x = \left(\frac{80}{81} \right)^{1/5}$

$$f\left(\left(\frac{80}{81} \right)^{1/5}\right) = \left(\frac{80}{81} \right)^{\frac{2000}{5}} \left(\left(\frac{80}{81} \right)^{\frac{25}{5}} - 1 \right)$$

$$= \left(\frac{80}{81} \right)^{400} \left(\left(\frac{80}{81} \right)^5 - 1 \right)$$

$$(80)^{400} \cdot (81)^{-395} \left((80)^5 - (81)^5 \right)$$

21. The coefficient of x^{48} in $1(1+x) + 2(1+x)^2 + 3(1+x)^3 + \dots + 100(1+x)^{100}$ is :

(1) $100^{101} C_{50} - 10^1 C_{49}$ (2) $100^{101} C_{49} - 10^1 C_{50}$ (3) $10^1 C_{46} - 100$ (4) $10^1 C_{47} - 10^1 C_{46}$

Ans. [2]

Sol. Let $1+x = r$

$$\therefore S = 1.r + 2.r^2 + 3.r^3 + \dots + 100r^{100} \quad \dots(1)$$

(AGP)

$$rS = 1.r^2 + 2.r^3 + \dots + 99r^{100} + 100r^{101} \quad \dots(2)$$

(1) - (2) gives

$$S = -\frac{(1+x)^{101}}{x^2} + \frac{1}{x^2} + \frac{100(1+x)^{101}}{x}$$

$$\therefore \text{coefficient of } x^{48} \text{ in } S = -\text{coefficient of } x^{48} \text{ in } \frac{(1+x)^{101}}{x^2} + 100.$$

$$\text{Coefficient of } x^{48} \text{ in } \frac{(1+x)^{101}}{x} = -100^{101} C_{49} - 10^1 C_{50}$$